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Background: Randomized trials aimed at improving the quality of
medical care often randomize the provider. Such trials are frequently
embedded in health care systems with available automated records,
which can be used to enhance the design of the trial.

Methods: We consider how available information from automated
records can address each of the following concerns in the design of
a trial: whether to randomize individual providers or practices;
clustering of outcomes among patients in the same practice and its
impact on study size; expected heterogeneity in adherence and the
response to the intervention; eligibility criteria and the trade-offs
between generalizability and internal validity; and blocking or
matching to alleviate covariate imbalance across practices.
Results: Investigators can use available information from an auto-
mated database to estimate the amount of clustering of patients
within providers and practices, and these estimates can inform the
decision on whether to randomize at the level of the patient, the
provider, or the practice. We illustrate calculation of the anticipated
design effect for a proposed cluster-randomized trial and its impli-
cations for sample size. With available claims data, investigators can
apply focused eligibility criteria to exclude subjects and providers
with expected low compliance or lower likelihood of benefit, al-
though possibly at some loss of generalizability. Chance imbalances
in covariates are more likely when randomization occurs at the level
of the practice than at the level of the patient, so we propose a
matching score to limit such imbalances by design.

Conclusions: Challenges to compliance, expected small effects, and
covariate imbalances are particularly likely in cluster-randomized
trials of quality improvement interventions. When such trials are
embedded in medical systems with available automated records, use
of these data can enhance the design of the trial.
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ell-designed randomized trials provide the best evi-

dence on the value of interventions to improve the
quality of medical care. Although observational studies can
yield useful insights on the value of practice patterns, con-
cerns about selection of practices and subjects, unmeasured
confounding variables, and concurrent changes in practice
patterns and outcomes limit precise measurement of the
impact of practice in observational studies.

A key issue in the design of trials to evaluate quality
improvement interventions is the unit of randomization. This
can be the individual patient, the provider, a group of pro-
viders within a practice, or several practices perhaps within a
geographic area. If possible, randomization of individual
patients has some key advantages because it allows for
evaluation of treatment effects within practices. Randomiza-
tion of individual patients also reduces the likelihood of
covariate imbalances that can arise when practices see dif-
ferent types of patients. Furthermore, a trial that randomizes
individual patients can use blocking within practices to limit
the threat to validity that arises when practices have different
levels of adherence to a protocol or when rates of outcomes
vary across practices because providers’ clinical skills differ.
A trial that randomizes individual patients can also increase
treatment effects, although at some loss of generalizability,
through restriction to patients with documented eligibility and
interest in the topic of the intervention.

In some situations, randomizing individual patients is
either infeasible or unethical. If interventions are directed
toward providers, they may find it impossible to deliver differ-
ent, randomly assigned interventions to their different pa-
tients. If education or evidence leads providers to conclude
that 1 therapeutic approach is preferred over others, they
cannot ethically deliver an alternative. Furthermore, if pa-
tients share information with others treated by the same
provider, assignment of all patients of this provider to the
same intervention can enhance compliance, and conversely
assignment to different interventions can lead to dilution of
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treatment effects through nonadherence. Contamination that
occurs because patients do not adhere to their assigned
treatment introduces a bias that well-designed studies seek to
minimize. These design features often dictate that random-
ization be at the level of the provider.

Cluster randomized trials are more difficult to design
than individually randomized trials for several reasons: the
need to account for correlations in outcomes among patients
within a practice, the particular ethical challenges in such
trials, the likelihood that the unit of analysis differs from the
unit of randomization, frequently limited data for eligibility
criteria before randomization, and the heightened potential
for imbalanced covariates.' > However, randomized trials that
evaluate interventions to improve the quality of health care are
often conducted within health care systems in which adminis-
trative data are available to aid in the design of the trial.

This article considers how one can use such data to
inform key aspects of study design. These elements include
whether randomization should occur at the level of the
practice or individual providers; what magnitude of clustering
should be anticipated among patients treated by the same
provider; what eligibility criteria would strengthen the trial;
what covariates are likely to influence adherence to treat-
ments and study outcomes in important ways; and how the
design can best balance these covariates across randomized
treatments.

UNIT OF RANDOMIZATION

A first question in the design of a trial to evaluate a
quality improvement intervention is whether randomization
should occur at the level of the patient, provider, practice, or
even a broader group of related practices. If outcomes are
measured separately in each patient, then randomization at
the finest possible level has advantages for the balance of
covariates. However, if providers within a practice share pa-
tients or treatment strategies, adherence to protocol-specified
practices will probably decline. Thus, measures of agreement
in treatments received by patients of different providers
within a practice can index the likely contamination that
would occur if these providers were randomized to different
treatment groups.

In a placebo-controlled trial, nonadherence biases esti-
mated treatment effects in an intention to treat analysis
toward the null; it also reduces the power of the trial to find
significant relationships. Specifically, the power of a study
with p percentage of participants who comply with the
assigned protocol, relative to a study with full compliance, is
no more than p percent, and may be as low as p* percent, of
the power of a fully compliant study.* For example, if a study
is designed to have 90% power to detect an effect of a
prespecified magnitude, but in the actual trial 20% of ran-
domized participants cross over to the alternative treatment,
then actual power will be no more than 72% (80% of 90%)
and may be as low as 58% (64% of 90%). From the parallel
perspective of the necessary sample size to detect a prespeci-
fied effect with given power,” if N is the number of subjects
needed in each of 2 arms of a trial assuming perfect compli-
ance, but a proportion p, of individuals assigned to active
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treatment do not comply and a proportion p, of individuals
assigned to placebo independently initiate the active treat-
ment, then the number needed per arm accounting for these
drop-outs and drop-ins is N/(1 — p, — p,)* as long as p, and
P, are not too large. Thus, even modest levels of contamina-
tion can have a large impact on the validity of a trial.

Consider, as an example, the choice of unit of random-
ization in a trial that evaluated a strategy to improve prescrib-
ing of antibiotics among inpatients in an academic medical
center.® The outcome of interest, measured in individual
patients, was an order for an antibiotic (levofloxacin or ceftazi-
dime) deemed unnecessary by a priori criteria. Although indi-
vidual interns, residents, and attending physicians wrote such
medication orders, these doctors worked closely together
within a service. The information from the educational inter-
vention, directed to interns and residents and based on prin-
ciples of academic detailing,”®* would likely have been shared
among the physicians within a service. Because of this clear
expectation of shared information, the units of randomization
in the trial were 17 general medical, oncology, and cardiology
services within the medical center. To provide some balance
in patient covariates by design, randomization was blocked
by service type (general medical, oncology, or cardiology).

In the design phase of some trials, the likely extent of
nonadherence to the protocol that will arise through shared
patients and practices is often unclear. Availability of a
computerized claims database offers the potential to evaluate
the extent to which multiple providers within a practice share
patients and the extent of correlation of practice patterns
among providers within a practice. One simple measure of
sharing would be the percent of potentially eligible patients
who see multiple providers within a practice. More sophisti-
cated measures of clustering within practices could use mul-
tilevel models to quantify agreement in treatments among
patients of the same provider, as well as among patients
treated by different providers within the same practice.’ Esti-
mating the intracluster correlation among providers within a
practice can inform the decision about the best level of
randomization. A high intracluster correlation indicates
that the practice would be preferred over individual clini-
cians as the more appropriate unit of randomization. In-
deed, if patients or practice styles are shared among
providers within a practice, then contamination would
more likely occur if patients within the practice were
assigned to different treatments.

In choosing the unit of randomization, a hybrid ap-
proach with physicians or practices randomized at 1 level,
and patients separately randomized to a complementary in-
tervention, may warrant consideration. For example, some
practices might be randomly targeted for visits from aca-
demic detailers to discuss optimal prescribing for specific
indications. A separate, independent randomization of at-risk
patients from both intervention and control practices could
choose some patients to receive additional information on
optimal drug use either by mail, telephone, or both. Investi-
gators could use available information in a database as they
design the study to balance the practices on important covari-
ates and to identify the at-risk patients. The design of the
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Healthy Bones Project provides an example of such a trial.'®
This trial randomized 826 primary care physicians in Penn-
sylvania either to receive a one-on-one academic detailing
encounter covering fall and fracture prevention and osteopo-
rosis diagnosis and treatment, or to receive no intervention.
The trial separately randomized, at the level of the patient,
31,715 of these physicians’ patients who were enrolled in a
state-run pharmacy benefits program to receive (or not) sev-
eral mailings on osteoporosis and fracture prevention.

Such a factorial design allows for evaluation of the
separate effects of the 2 interventions. A limitation of such
factorial designs is that the interventions are generally as-
sumed to have independent, additive effects. Such trials
generally have limited power to detect interactions that occur,
for example, if both interventions are necessary for patients to
benefit.'" This factorial design is more appropriate if the mul-
tiple randomized treatments are directed toward different out-
comes (eg, improved prescribing by doctors and greater aware-
ness of treatment options, benefits, and risks by patients).

THE DESIGN EFFECT

The design of any multipractice study must consider the
degree of clustering among patients within a practice. The
intracluster correlation coefficient (also called the intraclass
correlation coefficient and often denoted by the Greek letter
p) quantifies the amount of agreement in a characteristic
between 2 people in the same practice.'> Many common
statistical tests make the assumption that units of analysis are
independent and identically distributed. This assumption is
violated when patients within a practice are more alike than
those from other practices. Usually, assuming the same total
number of patients in a given study, the variance of the
sample mean of a characteristic measured in a study with
more than 1 patient sampled from each of several practices is
greater than the variance of the sample mean of that charac-
teristic in a study with 1 patient included per practice.

Specifically, if we observe an outcome Y in each of
m patients within each of k practices, the intracluster
correlation coefficient quantifies the strength of agreement
in Y between 2 patients treated in the same practice. It is
the ratio of the variance between practices, denoted o3,
divided by the sum of the variance between practices plus
the variance among patients within a practice, denoted o7,
(ie, p = o%/(os + o). To estimate p, we calculate the

between mean square (BMS) as BMS = > m(y, — )/
i=1
(k — 1), where y, is the mean of Y in the ith practice, and y is
the overall mean of Y across all practices; and the within mean
square (WMS) as WMS = >F >” vy — »/mk — k)
=1 j=1
where y;; is the value of Y in the /jth patient from the ith
practice. Then, the estimated intracluster correlation is:
p = (BMS — WMS)/(BMS + (m — 1)WMS).

If the number of patients in each practice varies, so that
there are m; patients in the ith practice, then m is replaced by
m; in the formula for BMS, mk is replaced by the total
number of patients across all practices in the formula for
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WMS, and m is replaced by m,, in the formula for p, where
my = (Eilmi - Eilmiz/Eilmi)/(k - 1.

Often the goal of a study is to estimate the average
value of Y among all subjects in a given treatment group.
If we let 0> = 0% + 07 denote the variance of a single
observation of Y, then the variance of the mean is
var(Y) = [1 + (m — 1)plo*(km).

The term 1 + (m — 1) p is called the design effect
because it describes the increase in the variance of the mean
for a study with m patients in each of k practices compared
with the variance of the mean for a study that included the
same total number of patients but only 1 patient per practice.
If Y is dichotomous and the prevalence of Y follows a
binomial distribution with mean p, then the above formula
holds with p (1 — p) in place of 2, so the design effect also
describes the increase in variance associated with clustering
with discrete outcomes.

In the common situation with a variable number of
subjects per cluster, the average m is substituted for m,
although this will slightly underestimate the design effect.'?
A positive value of p, and hence a positive design effect,
indicates the need to design a cluster-randomized trial with a
higher sample size than an individually randomized trial
would require. A review of previous cluster-randomized trials
found that investigators often ignored the design effect in
their analyses, which led to erroneous P values, but they more
often ignored the design effect in sample size calculations, so
that power was inadequate to detect the hypothesized effect.'*

Planning for a cluster-randomized trial requires an a
priori estimate of the design effect. In many settings, one can
use standard approaches for estimating sample size, assuming
no clustering, and then increase the number of subjects by a
factor equal to the design effect.'?

As an example, consider a trial to evaluate an interven-
tion to improve screening and care for osteoporosis within a
large insurance plan in New Jersey.'> The intervention was
focused on women 65 years of age or older, or any enrollee
45 years or older with a prior fracture or recent use of
glucocorticoids. The intervention included education and re-
minders to primary care physicians and mailings and calls to
their at-risk patients.

The observed design effect in this trial was estimated
from 1973 patients in 435 primary care practices, based on
formulas presented above. Table 1 shows estimated intraclus-
ter correlation coefficients and design effects for the 3 pri-
mary endpoints observed during 10-month follow-up: receipt

TABLE 1. Observed Intracluster Correlations and Design
Effects for Outcomes in a Trial of Strategies to Improve
Osteoporosis Care: 1973 Patients in 435 Primary Care
Practices'®

Intracluster Design
Outcome Correlation Effect
Bone mineral density test 0.042 1.15
Prescription for osteoporosis 0.025 1.09
Either test or prescription 0.035 1.12
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TABLE 2. Impact of Cluster Size m and Intracluster
Correlation (ICC) on the Design Effect
ICC
m 0.01 0.02 0.03 0.04 0.05
4 1.03 1.06 1.09 1.12 1.15
10 1.09 1.18 1.27 1.36 1.45
20 1.19 1.38 1.57 1.76 1.85
50 1.49 1.98 2.47 2.96 3.45
200 2.99 4.98 6.97 8.96 10.95

of a bone mineral density test; a filled prescription for an
osteoporosis medication; or a composite consisting of either
of these 2 outcomes. The range of observed within-practice
correlations, from 0.025 to 0.042, is consistent with typical
intracluster correlations observed in other studies within prac-
tices.'® With the observed average of 4.5 patients per practice
in this trial of strategies to improve osteoporosis care,'> the
calculated design effects indicate that sample size must be
increased between 9% and 15%, compared with a study that
recruited 1 patient per practice.

As illustrated in Table 2 for the range of intracluster
correlations observed in this study,'> the observed design
effect will vary according to the average number of patients
included per cluster. Increasing the number of patients in
each cluster leads to a larger design effect for a fixed intra-
cluster correlation, but this may still be a cost-effective
strategy if the marginal cost per added patient in a cluster is
low. In this example, the major costs involve contact and
education of physicians, with little additional cost for inclu-
sion of extra patients within a practice.

Adams and colleagues'® have argued that only limited
information has been published on intracluster correlations
and design effects in multipractice studies. Because appro-
priate estimates are often unavailable at the time a cluster-
randomized trial is planned, investigators often have to esti-
mate study power for a range of possible design effects and
guess at the most reasonable values. However, when cluster-
randomized trials are conducted within health care systems
with available automated information on patient characteris-
tics and use of services, researchers can use this information
to obtain reliable estimates of the design effect as they plan a
study. Although the example we presented considered the
observed outcome during a cluster-randomized trial, a pretrial
estimate could also be obtained from historical information in
archived claims data on the same target population. Such
historical information is generally available when interven-
tions are coordinated within systems with regular data mon-
itoring. Better knowledge of the anticipated intracluster cor-
relation in the outcome at the time of study design will
increase the likelihood that the trial is adequately powered to
answer the question of interest.

FOCUS ON THOSE WHO WILL ADHERE
AND BENEFIT

Randomized trials use eligibility criteria to identify
those people who will most likely benefit from an interven-
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tion and to exclude those with contraindications. Often trials
have extensive eligibility and exclusion criteria, although
simple, wide entry criteria can increase enrollment and en-
hance generalizability.'” Narrow criteria can limit under-
standing of the applicability of interventions in groups of
patients that might benefit substantially. For example, older
people and women were frequently excluded from past clin-
ical trials of treatments for myocardial infarction, leaving
providers to wonder about the value of treatments in the age
group with the highest event rates.'®

Wide eligibility criteria are particularly relevant for
evaluation of quality improvement interventions because of
the need to demonstrate broad applicability of findings.
Nonetheless, some eligibility criteria are usually necessary to
focus on those who will benefit from the intervention. For
example, interventions to improve preventive care may have
limited value for patients at the end of life, such as those with
metastatic cancer for whom palliative care is more relevant.
Similarly, an intervention involving direct patient contact
may have little impact among demented patients. Inclusion in
the study population of people with little likelihood of com-
pliance with study procedures will decrease the observed
effect and dilute the power of the study. Once such people are
randomized, they must be included in intention to treat
analyses. For this reason, individually randomized trials often
include a run-in period to evaluate compliance before ran-
domization. Use of a run-in period can reduce generalizabil-
ity but enhance the internal validity of the study.'® In the
Physicians’ Health Study, compliance during the run-in pe-
riod was a powerful determinant of compliance during the
trial.>° Because increased compliance enhances internal va-
lidity and internal validity is a prerequisite for generalizabil-
ity, eligibility criteria that focus on people most likely to
benefit from interventions often have a net positive effect on
the value of a trial.

Implementation of eligibility criteria is challenging
when practices are the unit of randomization and individual
patients are not personally evaluated before enrollment. How-
ever, when a trial is embedded in a health care system with
automated claims data, substantial information may be avail-
able to specify useful eligibility criteria in the design of the
trial. For example, the intervention to improve care for osteo-
porosis described above focused on at-risk patients including
women age 65 years or older and those with a history of fracture
or recent use of glucocorticoids. Other eligibility (or inclusion)
criteria based on claims data could be added to identify patients
most likely to respond to interventions such as this.

UNBALANCED COVARIATES AND
BALANCING SCORES

With reasonable sample sizes, randomization will tend
to yield balance between groups in both observed and unob-
served covariates measured at the level of randomization.
However, with cluster randomization at the level of practices or
providers, characteristics of patients might still differ between
groups if a few providers have an unusual mix of patients.

The trial of interventions to improve care for osteopo-
rosis illustrates this phenomenon.'> Table 3 shows that char-
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TABLE 3. Baseline Characteristics of Physicians in the
Primary Analytic Population: Trial of Interventions to
Improve Osteoporosis Care'®

Physician Characteristics Intervention Control P*

No. 223 212 N/A

At-risk patients, median (IQR) 4 (2-5) 3 (2-5) 0.08
Age, yr, median (IQR) 49 (44-55) 49 (44-56) 0.7
Female, N (%) 40 (18) 33 (16) 0.5
Family medicine, N (%) 87 (39) 69 (33) 0.3
Internal medicine, N (%) 99 (44) 101 (48) —
Subspecialty, N (%) 37 (17) 42 (20) —

*P value based on rank-sum test for ordered characteristics, and x? test for gender
comparison and comparison of the distribution of medical specialties between groups.
IQR indicates interquartile range; N/A, not applicable.

TABLE 4. Baseline Characteristics of Patients in the Primary
Analytic Population: Trial of Interventions to Improve
Osteoporosis Care'®

Patient Characteristics Control P*

No. 997 976 —

Intervention

Age, yr, median (IQR) 68 (65-72) 69 (66-74) 0.004
Female, N (%) 895 (90) 922 (94) <0.001
Medications, N median (IQR) 12 (7-18) 11 (7-18) 0.5
Physician visits, N median (IQR) 13 (7-22) 13 (6-22) 0.8
Fractures, N (%) 134 (13) 95 (10) 0.02

*P-values for comparison of dichotomous characteristics from a logistic regression
model accounting for clustering within practices by generalized estimating equations;
for ordinal and continuous characteristics, a normal, random-effects model accounted
for clustering within practices.

acteristics measured at the level of the provider, the unit of
randomization in this trial, were generally balanced. By
contrast, Table 4 shows that some characteristics measured at
the level of the patient were not balanced, with a greater
percentage of women, a slightly older average age in the
control group, and a greater percentage of patients with a
history of fracture in the intervention group. This example
agrees with the experience of Puffer and colleagues® who
reviewed 36 published cluster-randomized trials; they found
little evidence for imbalance at the cluster level but potential
risk of bias at the individual level in 39% of trials.

Thus, imbalance between groups in individual-level
covariates poses a substantial threat to the validity of cluster-
randomized trials. To some extent, such imbalances can be
addressed at the time of analysis. However, addressing po-
tential imbalances at the time of study design will simplify
the presentation of results, allow randomization inference,
and possibly provide better control for confounding. Raab
and Butcher?' have discussed strategies for balancing such
covariates by design. With information on covariates predic-
tive of outcome collected upon recruitment of clusters, inves-
tigators can apply several approaches to balance these covari-
ates across treatment groups.

If one seeks to balance a few categorical covariates,
then separate randomizations of clusters can be performed
within blocks defined by the cross-classification of these
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covariates. Alternatively, one can improve balance through
sequential treatment assignment where at the time of each
randomization the distribution of covariates between treat-
ment groups is compared and treatment assignment is dynam-
ically chosen to minimize imbalances between covariate
patterns.”> Thus, for a 2-arm trial, the probability that a
cluster will be assigned to a given arm will generally not be
0.5, as it will be modified to favor an allocation that would
lessen differences in prespecified covariates among all clus-
ters randomized to date. This latter approach, also called the
minimization technique, is particularly useful if the number
of covariate patterns approaches the number of units to be
randomized.” Steptoe and colleagues®* used minimization to
balance several covariates in a cluster-randomized trial of be-
havioral counseling conducted in 20 general practices. Another
approach is to consider only designs with small average differ-
ences between treatment groups in some set of covariates. This
approach was taken by Henderson and colleagues in a cluster-
randomized trial of a sex education program in 25 schools in
Scotland.

An alternative approach is possible when trials are
conducted within health care systems with claims data. In-
vestigators can use historical information from these data to
identify characteristics predictive of the outcome of interest.
If many characteristics are predictive, a multivariate risk
score can be developed, and this score can account for clustering
within practices. Then, in the design of a cluster-randomized
trial, practices in each treatment group can be balanced on their
distributions of these overall predictive scores. Use of such a
score is akin to balancing on a propensity score or a multivariate
risk score.”

To illustrate the approach, consider the possible use of
a balancing score in the context of the trial of interventions to
improve care for osteoporosis.!> The administrative claims
data for the potentially eligible patients in this trial contained
information on use of osteoporosis medications and screening
tests for osteoporosis in the period before randomization.
Based on these data, we developed a predictive model for
such baseline use including the variables shown in Table 4.
Then, for each eligible physician, we obtained the average
predicted probability of osteoporosis care for all eligible
patients, based on their observed covariates. We next divided
physicians into 4 groups according to their average pre-
dicted probability of osteoporosis care, and also formed 3
strata according to the number of eligible patients. We then
randomly assigned physicians to intervention or control
group in blocks of 4 within the 12 strata formed by the
cross-classification of these measures of average treatment
probability and practice size. With this alternative random-
ization, baseline covariates of patients displayed better
balance between treatment groups (Table 5), suggesting
the utility of this approach.

SUMMARY
Availability of automated information on providers and
patients in a health care system can provide critical informa-
tion to improve the design of a cluster-randomized trial to
evaluate a quality improvement intervention within that sys-
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TABLE 5. Comparison of Baseline Characteristics of
Patients in the Primary Analytic Population After Alternative
Randomization Blocked on a Predictive Score and Practice
Size: Trial of Interventions to Improve Osteoporosis Care'>

Patient Characteristics Control P*

No. 1010 963 -
68 (65-73) 0.5

Intervention

Age, yr, median (IQR) 69 (66-73)

Female, N (%) 936 (93) 881 (91) 0.4
Medications, N median (IQR) 12 (7-18) 11 (7-18) 0.6
Physician visits, N median (IQR) 12 (6-21) 14 (7-23) 0.07
Fractures, N (%) 123 (12) 106 (11) 0.5

*P-values for comparison of dichotomous characteristics from a logistic regression
model accounting for clustering within practices by generalized estimating equations;
for ordinal and continuous characteristics, a normal, random-effects model accounted
for clustering within practices.

tem. A first decision in study design is the choice of the
unit of randomization, and data on sharing of patients and
similarity of care among providers within a practice can
help investigators decide whether to randomize individual
providers or practices. A challenge in this regard is the
need to define and validate algorithms to assign patients to
a unique provider when they see several providers within
a practice.

The necessary sample size to provide a definitive an-
swer to a question of interest depends on the intracluster
correlation among patients within a practice. Preintervention
estimates of the range of design effects that might be ex-
pected can yield realistic sample size determinations. Some
patients have a decreased likelihood of benefit and may
also be less likely to respond to an intervention. A priori
restriction to those with a reasonable likelihood of adher-
ence and benefit can enhance the validity of an interven-
tion trial. Imbalances in subject-specific covariates are
especially likely in cluster-randomized trials. However,
investigators can minimize such imbalances with a design
that uses balancing scores or other strategies based on
available automated data.

Certainly there are limitations as well as strengths
associated with the use of automated claims data to design
cluster-randomized trials, and also to assess outcomes within
enrolled populations.?” Some potentially important covariates
that influence outcomes and might be targets for balancing by
design may not be available in claims data sets. For example,
patient characteristics such as weight, cigarette smoking,
alcohol consumption, and physical activity are often not
available in claims data. Many claims data sets do not contain
actual laboratory values. However, automated data sets may
be optimal for assessment of history of system use, prior diag-
noses, and use of medications. Outcomes identified through
claims data are subject to measurement error,”® and privacy
concerns may preclude investigators from receipt of detailed
medical records needed to confirm diagnoses. However, for
health services outcomes such as receipt of services or filled
prescriptions, automated databases may be optimal because
reimbursement to providers requires a filed claim. For such
outcomes, carefully constructed claims data sets may serve as
the gold standard for outcome assessment.
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