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Comparison of Meta-Analytic Results of Indirect, Direct,
and Combined Comparisons of Drugs for Chronic

Insomnia in Adults: A Case Study

Ben W. Vandermeer, BSc, MSc, Nina Buscemi, PhD, Yuanyuan Liang, BSc, MSc, PhD
and Manisha Witmans, Dip. ABSM, MD, FRCPC

Background: Our Center recently conducted a systematic review of
the manifestations and management of chronic insomnia in adults.
The efficacy and safety of benzodiazepines and nonbenzodiazepines,
relative to placebo, were compared indirectly.
Objectives: Determine how the results of indirect comparisons
made in the review compare with the results of direct comparisons,
as well as with estimates derived from Bayesian mixed treatment
comparisons. Establish general appropriateness of the use of results
of indirect or mixed treatment comparisons.
Methods: Treatments were compared using frequentist direct, indi-
rect, and combined methods, as well as Bayesian direct and mixed
methods.
Results: Estimates for comparisons tended to be clinically and
statistically similar across methods. Estimates obtained through indirect
comparisons were not biased and were similar to those obtained
through direct analysis.
Conclusions: Results of indirect comparisons made in the review,
accurately reflected the current evidence. Frequentist and Bayesian
methods of analysis of indirect comparisons should be considered
when performing meta-analyses.

Key Words: meta-analysis, indirect comparison, mixed-treatment
comparison

(Med Care 2007;45: S166–S172)

In July 2004, the University of Alberta/Capital Health
Evidence Based Practice Center was commissioned by

the Agency for Healthcare Research and Quality (AHRQ)
and the Office of Medical Applications of Research
(OMAR) to perform a systematic review of the efficacy
and safety of treatments for chronic insomnia in adults.1

We used meta-analysis to examine treatments such as
medications �ie, benzodiazepines (BNZ) and nonbenzodi-
azepines (NBNZ)�, behavioral therapy, complementary

and alternative therapy (eg, melatonin, valerian), antide-
pressants, barbiturates, and alcohol. Through the analysis
of randomized controlled trials (RCTs) that compared
these treatments with placebo, we assessed the following
outcomes: sleep onset latency (SOL), wakefulness after
sleep onset (WASO), sleep efficiency (SE), total sleep time
(TST), sleep quality (SQ), and adverse events (AE).

A stringent 11-month timeline for this systematic re-
view forced the authors to make decisions about the main
comparisons to be meta-analyzed with respect to the efficacy
and safety of treatments for chronic insomnia in adults. We
primarily compared active treatments with placebo, exclud-
ing from our review any RCT that did not include a placebo
arm. To examine the relative efficacy and safety of active
treatments, we performed indirect comparisons (eg, active
treatment A vs. placebo compared with active treatment B vs.
placebo) using the methods described by Bucher et al.2 These
results were treated as secondary outcomes.

In this method, a point estimate of the difference
between 2 interventions is calculated by taking the difference
of each intervention compared with a third intervention.
Therefore, if TBP is the direct estimate of a comparison
between BNZ and placebo, and TNP is the direct estimate of
a comparison between NBNZ and placebo, then TBN is the
indirect estimate of a comparison between BNZ and NBNZ.
Hence,

TBN � TBP � TNP

VARBN � VARBP � VARNP

where VAR is the variance of the respective parameters.
Because TBP and TNP are estimated from different studies,
they are statistically independent.

This method of analyzing indirect comparisons is sim-
ple and straightforward and preserves the randomization of
the initial RCTs. Although some have suggested that the
method can lead to bias,2 Song et al found that it generally
does not.3

Though we included these results in our systematic
review, we encouraged readers to treat them with more
caution than they would the results of direct comparisons.1 In
the current study, we used both frequentist and Bayesian
methods (see below) to compare the result of indirect com-
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parison of BNZ and NBNZ with the results of direct and
combined comparisons.

METHODS

Frequentist Estimates
We conducted all frequentist meta-analyses using the

standard techniques of random effects meta-analysis of con-
tinuous variables using inverse variance as described by
Deeks et al.4 We extracted data from all RCTs with BNZ and
NBNZ arms that had been excluded from the original meta-
analysis because they lacked placebo arms. We combined
these studies and the 3-arm trials (ie, trials analyzing BNZ,
NBNZ, and placebo) included in the original review to
calculate a direct estimate for the efficacy of BNZ versus
NBNZ for the 6 outcomes of interest.

For each outcome, we also calculated an indirect esti-
mate different from the estimate presented in the original
review. In the calculation in the original review, the indirect
estimate included all evidence from both 2- and 3-arm trials.
In the current study, the indirect estimate included only 2-arm
trials (ie, trials analyzing either BNZ vs. placebo or NBNZ
vs. placebo). We excluded 3-arm trials because they were
included in the direct comparison of BNZ versus NBNZ and
we wished to avoid double-counting their data when we
calculated the combined estimate.

We combined the direct estimate with the indirect
estimate from the current study using the method described
by Song et al.3 The method weights by the inverse variance
as in a standard meta-analysis.

For the mathematical details of these models, see
Appendix A.

Bayesian Estimates
The use of Bayesian statistical methods in meta-analy-

sis has been well documented.5 These methods involve
choosing prior distributions for the mean of the overall
estimate, the means of the individual estimates of each study,
and the between-study variance (when using random effects
meta-analysis). The study data are then combined with the
priors to derive posterior distributions for each study and for
the overall estimated effect. We recalculated the direct com-
parison frequentist meta-analyses described above using
these Bayesian methods.

The frequentist combined estimate of results of direct
and indirect comparisons can be duplicated using Bayesian
methods by a process known as the Mixed Treatment Com-
parison, described by Lu and Ades.6 Under well-defined
Bayesian hierarchical models proposed by Smith et al,7

Bayesian approaches can be used to analyze simultaneously
any number of interventions from a connected network of
studies. One treatment is defined as a reference, and basic
parameters are established by comparing other treatments to
it. All other contrasts are then defined as functional parame-
ters of these reference parameters.

The Bayesian models used for both direct meta-analysis
and mixed treatment comparisons are outlined in detail in
Appendix A. Although the references outline a binary model,
the methods are easily adapted to continuous variables, be-

cause the binary data is converted into a log odds ratio and
meta-analyzed as a continuous variable.

We derived posterior estimates for both the Bayesian
meta-analysis and mixed treatment comparison using Gibbs
Sampling via Markov Chain Monte Carlo simulation7 in
WinBUGS (Version 1.4). This method accounts for the cor-
relation structure induced by 3-arm trials (or trials with more
than 3 arms) and permits the user to estimate the probability
that each intervention is the best of those chosen.

We gave all means vague prior distributions (ie, normal
distribution with mean 0 and a sufficiently large variance).
Choice of prior distributions for the between-studies variance
parameter is more important than priors on the means, be-
cause posterior distributions are more sensitive to variance
priors. An inverse gamma prior, which is weakly informative,
was used as recommended by Gilks et al,8 although research
into which priors should be used for these parameters has
been conducted and the results were largely inconclusive.9 A
sensitivity analysis was conducted to ascertain the effects the
choice of prior had on the estimates.

RESULTS
Results of frequentist and Bayesian comparisons be-

tween BNZ and NBNZ for all 6 outcomes are presented
(Table 1). One observation that is apparent in nearly all 6
outcomes is that there are more studies involved in the
indirect comparisons than there are in the direct comparisons,
yet the confidence intervals in the latter group are not much
narrower than the former—in fact in some instances they are
wider. This finding can by explained as the following. It can
be shown mathematically that assuming all study standard
errors and between-study variances are approximately equal
(�), a direct comparison involving n studies would have

standard error proportional to �/�n , whereas an indirect
comparison involving n studies would have standard error

2�/�n . Thus it takes on average 4 times as many studies in
an indirect comparison to match the variance of a similar

direct comparison (ie, 2�/�4n � �/�n) . The increase in
confidence interval width that can be observed between the
modified and original indirect comparisons is attributable to
both the decreased sample size as well as the elimination of
3-arm trials that tended to have lower variation.

Sleep Onset Latency
Results were clinically and statistically similar across

comparisons. There was less than 1 minute difference in sleep
onset across the 6 comparisons, and an insignificant differ-
ence between BNZ and NBNZ for each comparison. The
Bayesian rankings confirmed the uncertainty of the relative
efficacy of the 2 active interventions, indicating a 75%
likelihood that NBNZ was more efficacious and a 25%
likelihood that BNZ was more efficacious. The rankings
showed that each treatment was superior to placebo.

Wakefulness After Sleep Onset
WASO values among the 6 comparisons ranged from a

10-minute advantage for BNZ (observed with the frequentist
indirect approach) to a 2-minute advantage for NBNZ (with

Medical Care • Volume 45, Number 10 Suppl 2, October 2007 Comparisons of Drugs for Chronic Insomnia

© 2007 Lippincott Williams & Wilkins S167



TA
B

LE
1.

Re
su

lts
of

C
om

p
ar

is
on

s
Be

tw
ee

n
Be

nz
od

ia
ze

p
in

es
an

d
N

on
be

nz
od

ia
ze

p
in

es
fo

r
6

O
ut

co
m

es

O
ut

co
m

e

F
re

qu
en

ti
st

B
ay

es
ia

n

D
ir

ec
t

C
om

pa
ri

so
n

In
di

re
ct

C
om

pa
ri

so
n

M
od

ifi
ed

In
di

re
ct

C
om

pa
ri

so
n

C
om

bi
ne

d
D

ir
ec

t
C

om
pa

ri
so

n
C

om
bi

ne
d

P
ro

ba
bi

lit
y

of
“B

es
t”

S
le

ep
on

se
t

la
te

nc
y

(m
in

)
1.

58
(�

3.
38

,6
.5

4)
1.

63
(�

4.
35

,7
.6

1)
2.

20
(�

4.
64

,9
.0

4)
1.

79
(�

2.
22

,5
.8

1)
1.

62
(�

4.
81

,6
.8

8)
1.

74
(�

3.
33

,6
.6

2)
N

B
N

Z
:

75
.5

%
,

B
N

Z
:

24
.5

%
,

11
S

tu
di

es
62

S
tu

di
es

54
S

tu
di

es
65

S
tu

di
es

11
S

tu
di

es
65

S
tu

di
es

P
la

ce
bo

:
0.

0%

W
ak

ef
ul

ne
ss

af
te

r
sl

ee
p

on
se

t
(m

in
)

�
0.

46
(�

19
.8

8,
18

.9
7)

�
10

.4
7

(�
26

.7
8,

5.
84

)
�

8.
27

(�
25

.5
7,

9.
03

�
4.

82
(�

17
.7

4,
8.

10
)

1.
99

(�
28

.0
2,

25
.2

4)
�

3.
91

(�
19

.8
0,

9.
68

)
N

B
N

Z
:

27
.3

%
,

B
N

Z
:

72
.7

%
,

3
S

tu
di

es
17

S
tu

di
es

16
S

tu
di

es
19

S
tu

di
es

3
S

tu
di

es
19

S
tu

di
es

P
la

ce
bo

:
0.

0%

S
le

ep
ef

fi
ci

en
cy

(%
po

in
ts

)
3.

39
(1

.2
9,

5.
49

)
0.

48
(�

2.
24

,3
.2

0)
�

1.
60

(�
5.

56
,2

.3
6)

2.
29

(0
.4

4,
4.

15
)

3.
40

(0
.3

9,
6.

42
)

1.
50

(�
1.

12
,4

.0
9)

N
B

N
Z

:
12

.4
%

,
B

N
Z

:
87

.6
%

,
3

S
tu

di
es

16
S

tu
di

es
13

S
tu

di
es

16
S

tu
di

es
3

S
tu

di
es

16
S

tu
di

es
P

la
ce

bo
:

0.
0%

T
ot

al
sl

ee
p

ti
m

e
(m

in
)

12
.3

8
(0

.6
4,

24
.1

2)
11

.1
3

(�
2.

51
,2

4.
77

)
6.

66
(�

10
.2

7,
23

.5
9)

10
.5

2
(0

.8
8,

20
.1

7)
10

.5
3

(�
0.

38
,2

4.
50

)
9.

98
(�

0.
53

,2
0.

26
)

N
B

N
Z

:
96

.9
%

,
B

N
Z

:
3.

1%
,

8
S

tu
di

es
37

S
tu

di
es

31
S

tu
di

es
39

S
tu

di
es

8
S

tu
di

es
39

S
tu

di
es

P
la

ce
bo

:
0.

0%

S
le

ep
qu

al
it

y
(S

M
D

)
0.

11
(�

0.
04

,0
.2

7)
0.

32
(0

.1
4,

0.
50

)
0.

35
(0

.1
3,

0.
57

)
0.

19
(0

.0
6,

0.
32

)
0.

11
(�

0.
06

,0
.2

8)
0.

22
(0

.0
8,

0.
37

)
N

B
N

Z
:

99
.9

%
,

B
N

Z
:

0.
1%

,
11

S
tu

di
es

45
S

tu
di

es
38

S
tu

di
es

49
S

tu
di

es
11

S
tu

di
es

49
S

tu
di

es
P

la
ce

bo
:

0.
0%

A
dv

er
se

ev
en

ts
(r

is
k

di
ff

er
en

ce
)

0.
07

(0
.0

0,
0.

14
)

0.
10

(0
.0

4,
0.

16
)

0.
11

(0
.0

3,
0.

19
)

0.
09

(0
.0

3,
0.

14
)

0.
07

(�
0.

03
,0

.1
8)

0.
09

(0
.0

3,
0.

16
)

N
B

N
Z

:
1.

7%
,

B
N

Z
:

0.
0%

,
17

S
tu

di
es

59
S

tu
di

es
52

S
tu

di
es

69
S

tu
di

es
17

S
tu

di
es

69
S

tu
di

es
P

la
ce

bo
:

98
.3

%

D
ir

ec
t

co
m

pa
ri

so
n

in
cl

ud
es

re
su

lt
s

of
m

et
a-

an
al

ys
es

us
in

g
on

ly
st

ud
ie

s
th

at
co

m
pa

re
d

th
e

2
tr

ea
tm

en
ts

di
re

ct
ly

.
In

di
re

ct
co

m
pa

ri
so

n
in

cl
ud

es
re

su
lt

s
as

ca
lc

ul
at

ed
in

th
e

or
ig

in
al

sy
st

em
at

ic
re

vi
ew

.
A

ll
st

ud
ie

s
th

at
co

nt
ai

ne
d

1
(o

r
bo

th
)

of
th

e
2

in
te

rv
en

ti
on

s
in

ad
di

ti
on

to
a

pl
ac

eb
o

ar
m

ar
e

in
cl

ud
ed

.
M

od
ifi

ed
in

di
re

ct
co

m
pa

ri
so

n
is

sa
m

e
as

in
di

re
ct

co
m

pa
ri

so
n,

bu
t

w
it

h
th

e
3-

ar
m

tr
ia

ls
re

m
ov

ed
fr

om
th

e
an

al
ys

is
.

C
om

bi
ne

d
es

ti
m

at
e

(f
re

qu
en

ti
st

):
w

ei
gh

te
d

co
m

bi
na

ti
on

of
th

e
di

re
ct

co
m

pa
ri

so
n

an
d

th
e

di
re

ct
an

d
m

od
ifi

ed
in

di
re

ct
co

m
pa

ri
so

ns
.

C
om

bi
ne

d
es

ti
m

at
e

(B
ay

es
ia

n)
:

B
ay

es
ia

n
m

ix
ed

tr
ea

tm
en

t
co

m
pa

ri
so

n
of

al
l

st
ud

ie
s.

P
ro

ba
bi

li
ty

of
“B

es
t”

:
T

he
pe

rc
en

ta
ge

th
at

ea
ch

in
te

rv
en

ti
on

ra
nk

ed
nu

m
be

r
1

am
on

g
th

e
3

in
te

rm
s

of
ef

fi
ca

cy
or

sa
fe

ty
in

ea
ch

it
er

at
io

n
of

th
e

M
on

te
–C

ar
lo

M
ar

ko
v-

C
ha

in
si

m
ul

at
io

n.
N

B
N

Z
in

di
ca

te
s

no
nb

en
zo

di
az

ep
in

es
;

B
N

Z
,

be
nz

od
ia

ze
pi

ne
s;

S
M

D
,

st
an

da
rd

iz
ed

m
ea

n
di

ff
er

en
ce

.

Vandermeer et al Medical Care • Volume 45, Number 10 Suppl 2, October 2007

© 2007 Lippincott Williams & WilkinsS168



the Bayesian direct approach), although none of these differ-
ences was statistically significant. The difference in the esti-
mates for direct and indirect analyses of WASO using the
frequentist approach (less than a 1-minute advantage for BNZ
was observed with the frequentist direct approach, whereas a
10-minute advantage was observed with the frequentist indi-
rect approach) may be clinically important in the context of
other clinical outcomes. For example, a 10-minute increase in
WASO with a greater number of awakenings may be clini-
cally important, whereas a 10-minute increase in WASO
without an increase in the number of awakenings may not be
clinically important. The Bayesian rankings demonstrated a
73% likelihood that BNZ was more efficacious and a 27%
likelihood that NBNZ was more efficacious.

Sleep Efficiency
The results for SE (defined as the percentage of total

time in bed that a subject was asleep) ranged from an
advantage of 3.4 percentage points for BNZ (observed with
the direct comparison for both methods) to an advantage of
1.6 percentage points for NBNZ (observed with the frequen-
tist modified indirect comparison). The differences among
methods were not clinically significant. Also, the direct esti-
mates indicated a statistically significant difference between
the 2 interventions, unlike the indirect estimates, which indi-
cated an insignificant difference. The Bayesian rankings sug-
gested an 88% likelihood that BNZ was the most efficacious
of the interventions.

Total Sleep Time
Total sleep time did not differ substantially across

comparisons. Some estimates were statistically significant
and some were statistically insignificant, but all were clini-
cally comparable. The Bayesian rankings suggested a 97%
likelihood that NBNZ was the most efficacious intervention.

Sleep Quality
Differences in SQ (defined as subject’s overall satis-

faction with sleep) estimates across the 6 comparisons were
statistically insignificant. Clinical significance was more dif-
ficult to judge because the standardized difference method
required data to be represented in units of standard deviation.
We also note that the indirect evidence showed a statistically
significant difference in SQ between interventions, whereas
the direct evidence differences were not statistically signifi-
cant. Despite the insignificance of some of the other esti-
mates, the Bayesian rankings indicated almost a 100% like-
lihood that NBNZ was the most efficacious intervention.

Adverse Events
The AE estimates were similar across comparisons,

ranging from risk differences of 0.07 (observed with the
direct comparison with both methods) to 0.11 (observed with
the frequentist modified indirect comparison). None of the
differences were statistically significant. The clinical impor-
tance of the difference in AE depends on the nature and
severity of the AEs. Because most AEs in this study were
mild, the differences were not clinically significant. Only 1
comparison (Bayesian direct) indicated a statistically insig-
nificant difference between BNZ and NBNZ. The Bayesian

rankings demonstrated that placebo resulted in the fewest
AEs.

Prior Sensitivity for Bayesian Analyses
All our Bayesian analyses were completely insensitive

to the vague priors chosen for the basic trial level and
combined means for each group. We used normal priors
centered at 0 with large variance, and our results did not
change when we modified the variance or used uniform priors
set to similar limits.

Results were much more sensitive to the choice of prior
distribution on the between-study variance parameter �2.
Lambert et al9 suggest several priors that can be used. As
mentioned in Appendix A, we chose the inverse gamma for
our primary analysis but we also analyzed a uniform distri-
bution on the standard deviation. Weakly informative ver-
sions of both priors were also tested to check for sensitivities
to selection of the parameters.

Not surprisingly, between-study variance prior sensi-
tivity was directly related to the number of studies in the
analysis, especially for the direct meta-analyses. For SOL,
SQ, and AE the effect was very minimal in both direct and
combined meta-analyses, mainly due to the large amount of
studies involved in these comparisons. TST, WASO, and SE
also contained negligible differences for the combined anal-
ysis, but some sensitivity was noticed in the direct meta-
analyses, particularly in WASO and SE which had only 3
studies included. Reducing the variability of the gamma
distribution (going from �,� � 0.001 to �,� � 0.1) had little
to no effect, but using a vague uniform prior �U(0,100)� did
somewhat increase the credible interval for these 3 outcomes.
When the uniform prior was made weakly informative
�U(0,10) and U(0,5)�, the estimates and credible intervals
were more in line with the gamma priors. The low amount of
studies in these outcomes makes it very difficult to estimate
between-study variance from the data, thus the priors become
influential in the final results. The U(0,100) prior allows
unreasonably high values to be sampled for the variance and
should probably not be used when sample sizes are small
(under 10 studies). See Lambert et al9 for more details.

Comparison of Direct and Indirect Evidence
Figure 1 displays the most important direct and indirect

comparisons: frequentist direct versus frequentist indirect
estimates, frequentist direct versus frequentist combined es-
timates, and Bayesian direct versus Bayesian mixed treatment
comparison estimates. None of the results for any comparison
were statistically significant. Furthermore, the differences
across methods in SOL, WASO, TST, and AE were small
relative to their effect sizes. A modest difference across
methods was observed in SE and SQ.

DISCUSSION

Clinical Interpretation of the Findings
Judging the clinical importance of differences in pooled

estimates derived by indirect, direct, and combined analyses
is difficult because, for sleep parameters such as SOL and
WASO, no clinically important effect threshold has been

Medical Care • Volume 45, Number 10 Suppl 2, October 2007 Comparisons of Drugs for Chronic Insomnia

© 2007 Lippincott Williams & Wilkins S169



established. Furthermore, SE, measured as time asleep rela-
tive to time in bed, is a crude measure of adequate or
restorative sleep. Clinical interpretation of these findings is
based on both individual judgment and consideration of
related factors, such as the severity of the disorder at baseline,
the patient’s perception of improvement, and the number of
awakenings.

In our clinical opinion, the differences among estimates
for SOL, SE, and TST are not clinically important because of
their small magnitude. The differences in numbers of AEs are
also clinically unimportant because the AEs were generally
mild (eg, headache, nausea). The differences in WASO esti-
mates could be considered clinically important in the context
of other clinical outcomes, such as number of night awaken-
ings, but they are not significant when considered in isolation.
The differences in SQ estimates are more difficult to assess
clinically because they are represented in units of standard
deviation and thus must be judged from a statistical rather
than a clinical perspective.

Statistical Interpretation of the Findings
We found no significant differences in any of the com-

parisons made among direct, indirect, and combined evidence.
Nonetheless, some minor clinical differences emerged (in terms
of point estimate magnitude) between estimates, as noted above.

Changes in statistical conclusions also occurred. In some cases,
a direct comparison yielded an insignificant result while an
indirect comparison yielded a significant result, or vice versa.
The former situation is discussed above; the latter can be
explained with differences in confidence interval sizes, because
shifts in the point estimates were minor. Changes in confidence
intervals can be attributed to differences in the number of studies
used in the analysis for each estimate and to the wider confi-
dence intervals of indirect estimates than of direct estimates
(assuming similar sample sizes). In addition, the Bayesian esti-
mates tended to have wider confidence intervals because the
Bayesian random effects inferences used in this study use a
varying between-studies variance parameter, unlike the standard
DerSimonian and Laird frequentist estimate, which assumes a
constant known between-study variance.

CONCLUSIONS
In terms of the insomnia systematic review, we believe

that the indirect comparisons provided were reasonable ap-
proximations of the direct comparisons that we could have
performed. Perhaps we need not have been so modest in our
presentation of these earlier indirect estimates. Although they
had been calculated for all outcomes, only results for SOL
and AEs were given in the text.1 Indirect evidence could have

FIGURE 1. Comparison of results of direct and indirect comparisons for 6 outcomes. (1) Comparison of direct frequentist
method versus indirect frequentist method. (2) Comparison of direct frequentist method versus combined frequentist method.
(3) Comparison of direct Bayesian method versus combined mixed treatment Bayesian method.
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been used in the absence of (or combined with) direct
evidence and the results would not have differed much
clinically or statistically from the direct results. Based on our
1 case study, it is difficult to make statements on how
generalizable our results may be, but combined with Song’s3

results, there is certainly reason for optimism. At the very
least, indirect evidence can be included as a sensitivity
analysis in a standard frequentist meta-analysis.

When multiple interventions need to be analyzed, the
Bayesian mixed treatment approach should be strongly con-
sidered as the method. In our example, results derived by
Bayesian methods did not differ greatly from those derived
by frequentist methods, but they can and did add value to the
analysis, as demonstrated by the ranking statistic. Bayesian
methods are also tidier when more than 3 interventions are
examined. Using a frequentist method with 3 interventions is
reasonably straightforward, but when a fourth intervention is
introduced, combining direct and indirect evidence becomes
messy. With mixed treatment comparisons, many interven-
tions can be easily assimilated into the analysis. All pairwise
contrasts can be isolated and other information can be ob-
tained. The ranking of interventions becomes particularly
useful in this instance, as it yields a straightforward method
of simultaneously analyzing all interventions. By adding a
cost function to the program, it is easy to incorporate a
cost-effectiveness analysis as well. Other optional useful
outputs include a point estimate and confidence interval for a
“typical study,” and an alternative estimate for each study
that “borrows strength” from the other studies, and may be
considered a better reflection of the study population.10

Those who conduct many meta-analyses may fall into a
trap of using the same methods for each, but it is important to
remember that each contains different populations, study de-
signs, interventions, and outcomes that should be considered
when choosing methods. Song et al3 have shown that indirect
evidence, properly analyzed, most often yields results that do not
differ significantly from those obtained via equivalent direct
evidence. This suggests there is no reason not to incorporate
indirect evidence into an analysis. Using indirect evidence be-
comes particularly important when direct evidence is scarce or
difficult to obtain and indirect evidence is abundant.
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APPENDIX A

Models and Computations Used for
Meta-Analytic Estimates
Direct Comparison—Frequentist

From each study i we have �i and SEi representing the
mean difference between the 2 groups being evaluated with
its respected standard error. The standard fixed effect, inverse
variance combined meta-analytic estimate (�IV) is given by:

�IV �
�wi�i

�wi

where wi �
1

SEi
2

For the random effects estimate we calculate further
parameters �2 and wi� as:

�2 �
Q � �k � 1	

�wi � ��wi
2

�wi

�
if Q 
 (k � 1) and 0 otherwise.

wi� �
1

SEi
2 � �2

where k is the number of studies and Q is the heterogeneity
statistic: Q � �wi��i � �IV	2

The pooled random effects estimate and its standard
error are then given by:

�RE �
�wi��i

�wi�

and

SE��RE	 �
1

��wi�

These are the values used for our frequentist direct
comparison.
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Indirect Comparison—Frequentist
Given any meta-analytic comparison of A versus B and

another comparison of A versus C, one can obtain an indirect
comparison of B versus C. Let �AB and SE(�AB) be the
combined mean difference and corresponding standard error
of the A versus B meta-analytic comparison and let �AC and
SE(�AC) be the equivalent values for the A versus C com-
parison. The comparison of B versus C is estimated as:

�BC � �AB � �AC with corresponding standard error

SEBC � �SEAB
2 � SEAC

2

Combined Comparison—Frequentist
Given an estimated meta-analytic mean difference and

standard error with a corresponding indirect estimate with
standard error, a combined estimate can be derived using the
techniques of random effects meta-analysis. The direct esti-
mate is considered one “study” whereas the indirect estimate
is considered a second “study.” The random effects procedure
is then followed as a normal meta-analysis of 2 studies.

Direct Comparison—Bayesian
The model used for the Bayesian meta-analyses was as

follows. Given mean differences di for each study with
respected standard errors SEi, this data is used as the likeli-
hood function of standard Bayesian updating equation:
P�	 � data	 � P�	 	P�data � 	 	. The exact model was:

di � Normal ��i,SEi
2	 (likelihood function).

�i � Normal �d,�2	 (distribution of individual study
means �i).

d � Normal �0,10000	 (prior distribution on overall
mean d).

1

�2
� Gamma �0.001,0.001	 (prior distribution on be-

tween-study variance �2).

Thus we chose a normal distribution centered at 0 for
the prior on location parameter d and an inverse gamma
parameter for the between-study variance parameter �2. The
parameters for the variance of d and the � and � parameters
of the 
 distribution were based upon,9 and were examined in
sensitivity analyses.

Mixed Treatment Comparison—Bayesian
This model combines data from studies that contain

any number of interventions and gives estimates of all
pairwise comparisons without distinguishing between di-
rect and indirect evidence. Because we have more than 2
treatments, it is not possible to isolate 1 comparison
(although for the purposes of this study we focused on the
benzodiazepine versus nonbenzodiazepine comparison). We
define dBP as the comparison of benzodiazepine with pla-
cebo and dNP as the comparison of nonbenzodiazepine
with placebo. We define bi—the baseline treatment of each
study (1 � placebo, 2 � benzodiazepine, 3 � nonbenzo-
diazepine)—as the “lowest” treatment of each study. We
get our mixed treatment model:

�ik � Normal �mik,SEik
2 	 Likelihood function (treatment

k in study i)
�ibk � Normal �dbk,�

2	 Main model for treatment
effects.

�ib � Normal�0,10000	 Prior distribution for study
level estimates.

dBP, dNP � Normal �0,10000	 Prior distribution for 2
functional parameters.

1

�2
� Gamma �0.001,0.001	 Prior distribution for be-

tween-study variation.
The chosen prior distributions were examined in sen-

sitivity analyses.
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