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Background: Because of uniform availability, hospital administra-
tive data are appealing for surveillance of adverse drug events
(ADEs). Expert-generated surveillance rules that rely on the pres-
ence of International Classification of Diseases, 9th Revision Clin-
ical Modification (ICD-9-CM) codes have limited accuracy. Rules
based on nonlinear associations among all types of available admin-
istrative data may be more accurate.
Objectives: By applying hierarchically optimal classification tree
analysis (HOCTA) to administrative data, derive and validate sur-
veillance rules for bleeding/anticoagulation problems and delirium/
psychosis.
Research Design: Retrospective cohort design.
Subjects: A random sample of 3987 admissions drawn from all 41
Utah acute-care hospitals in 2001 and 2003.
Measures: Professional nurse reviewers identified ADEs using
implicit chart review. Pharmacists assigned Medical Dictionary for
Regulatory Activities codes to ADE descriptions for identification of
clinical groups of events. Hospitals provided patient demographic,
admission, and ICD9-CM data.
Results: Incidence proportions were 0.8% for drug-induced bleed-
ing/anticoagulation problems and 1.0% for drug-induced delirium/

psychosis. The model for bleeding had very good discrimination and
sensitivity at 0.87 and 86% and fair positive predictive value (PPV)
at 12%. The model for delirium had excellent sensitivity at 94%,
good discrimination at 0.83, but low PPV at 3%. Poisoning and
adverse event codes designed for the targeted ADEs had low
sensitivities and, when forced in, degraded model accuracy.
Conclusions: Hierarchically optimal classification tree analysis is a
promising method for rapidly developing clinically meaningful
surveillance rules for administrative data. The resultant model for
drug-induced bleeding and anticoagulation problems may be useful
for retrospective ADE screening and rate estimation.
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Although adverse drug events (ADEs) are one of the largest
and most costly patient safety problems in the United

States,1,2 they have not been productively targeted for iden-
tification using administrative data. The Agency for Health-
care Research and Quality (AHRQ) has developed 20 pro-
vider-level patient safety indicators (PSIs) to be used with
administrative data.3 The provider-level PSIs are intended to
serve as a screening tool for surveillance of potentially
preventable complications of inpatient hospital care. How-
ever, nearly three-quarters of the PSIs are related to surgical
and obstetrical complications and only one—complications
of anesthesia—targets ADEs.4

The focus on indicators for surgical complications and
lack of indicators for ADEs reflects the more complete
coverage of surgeries by codes in the International Classifi-
cation of Diseases, 9th Revision, Clinical Modification (ICD-
9-CM). A relatively comprehensive ICD-9-CM code set fa-
cilitates the identification of both the population at risk for
surgical complications and the complications themselves. In
contrast, few ICD-9-CM codes specifically describe drug
exposure. Drug complication codes are rarely used and have
been found to have poor validity.5,6 Therefore, to identify
ADEs, it is necessary to look beyond drug complication
codes to other types of administrative data.
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In modeling ADE indicators using administrative data,
the challenge is to identify predictive covariates when both
the independent and dependent ICD-9-CM variables are
sparse. Incidence proportions of specific types of ADEs are
often low—in the �1% range. Given approximately 20,000
ICD-9-CM codes in use, individual codes possibly predictive
of a type of ADE are also sparsely distributed across all
admissions. Linear statistical techniques such as logistic re-
gression have been unable to produce accurate models with
these data.

There are 2 approaches that may facilitate modeling of
ADE surveillance rules using administrative data. One is to
expand the number of candidate covariates beyond ICD-
9-CM codes and Diagnosis-Related Groups (DRGs) to in-
clude all available non-ICD-9-code data, such as age, admis-
sion source, and length of stay. These data have a relatively
small number of possible response categories and are present
in most records. Current PSIs use all these data to identify the
risk pool but only use ICD-9-CM codes to identify adverse
events. Another approach is to use a partitioning analysis
rather than a linear statistical method. Hierarchically optimal
classification tree analysis (HOCTA) is an exact, nonpara-
metric, nonlinear statistical model.7 In applied research,
HOCTA has yielded predictive models possessing superior
accuracy and providing richer solutions than prior results
using linear models.8–11

In the present study, we applied HOCTA to all avail-
able administrative data to develop surveillance rules for
identifying inpatient ADEs manifesting as delirium or bleed-
ing problems.

METHODS

Description of Data
The data for this project were derived from a random

sample of 3987 patients in all 41 acute-care hospitals in Utah
in 2001 and 2003. The purpose of the study was rate estima-
tion for iatrogenic inpatient adverse events and validation of
ICD-9-CM codes for these events. The focus of this study
was ADEs. The methods are described in more detail else-
where.12 Briefly, professional nurse reviewers reviewed all
charts for adverse events. Up to 5 adverse events were
evaluated for each admission. Nurses coded causative drugs
into major classes. One of the physician authors verified
drug-class assignments manually. Specially trained pharma-
cists coded all reactions into Medical Dictionary for Regula-
tory Activities version 9.0 (MedDRA) terms for classification
of the outcome.13

Variable Selection
The investigators selected 2 of the most common

ADEs, delirium and psychosis, for the symptom-based ADEs
and bleeding and anticoagulation problems for the sign-based
ADEs. The decision to target symptom- and sign-based ADEs
related to the constraints on coding administrative data. Medical
coders may only code events documented in physician notes.
Physicians are less likely to recognize and document symptom-
based or subjective drug complications.14,15 Delirium is espe-
cially likely to be unrecognized.16 In contrast, physicians do

recognize laboratory-based or objective ADEs, such as coag-
ulation problems or bleeding.14,15 We therefore hypothesized
that ICD-9-CM codes would not be predictive of drug-
induced delirium, but would be predictive of bleeding and
anticoagulation problems.

Another distinction between the selected ADEs is that
a population at high risk for exposure can be established for
agents causing bleeding, but not for agents causing delirium.
A wide variety of commonly used drug classes cause delir-
ium. Not only would it be arduous to enumerate these classes
and determine ICD9 codes corresponding to indications for
them, but also the resulting at-risk cohort would contain a
large majority of the admissions in the main cohort. Fewer
classes of drugs commonly cause bleeding. Major mecha-
nisms for bleeding include inhibition of clotting and break-
down of gastric or intestinal mucosa. The commonly used
drug classes corresponding to these mechanisms are warfa-
rins, heparins, antiplatelet agents, nonsteroidal anti-inflam-
matory drugs (NSAIDs), and systemic glucocorticoids. How-
ever, administrative data lack pharmacy exposure data. The
absence of definitive exposure data is also a problem in
infection control, where device exposures are rarely available
for rate estimation of catheter-related infections.

Because we lacked pharmacy data to determine the
at-risk cohort, we estimated drug exposure using ICD-9-CM
codes. We derived a list of codes reflecting indications where
guidelines17,18 dictate the use of drugs that increase the
bleeding risk. We grouped these codes into general categories
(eg, coronary/cerebral vascular disease, selected vascular/
orthopedic procedures, and inflammatory conditions) and
created a dummy variable equal to 1 if at least 1 code was
present in that category. Relevant to our results is the cate-
gory of acquired or induced coagulopathies that comprised
seven ICD-9-CM diagnostic codes 286.5, 286.7, 286.9,
287.4, 790.92, E934.2, V58.61, and 1 procedure code 99.10.
We created the at-risk variable, which indicated the presence
of any of the codes of any exposure category. The complete
list of codes is available from the authors.

The hierarchical structure of MedDRA allowed events
to be sorted into related groups for the dependent variables.
The outcome for bleeding and anticoagulation problems com-
prised the following high-level terms: red blood cell analyses,
anemias not elsewhere classified (NEC), hemorrhages NEC,
coagulation and bleeding analyses, platelet analyses, throm-
bocytopenias, and anemia deficiencies. The outcome for de-
lirium and psychosis comprised the following high-level
terms: confusion and disorientation, perception disturbances,
deliria, anxiety symptoms, mental disorders NEC, psychotic
disorder NEC, behavior and socialization disturbance, de-
creased physical activity levels, delusional symptoms, de-
pressive disorders, dissociative states, and emotional and
mood disturbances NEC.

The independent variables were derived from the raw
administrative data submitted to the Utah Department of
Health. For ICD-9-CM codes, there were 16 fields: 1 primary
diagnosis field, 8 secondary diagnosis fields, 6 procedure
fields, and 1 external cause of injury code (E-code). These
fields included adverse event codes. To reduce the sparseness
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of the variable, we grouped ICD-9 codes into single-level
codes of the Clinical Classification System (CCS) using SAS
code available from the AHRQ web site.19 Non-ICD-9-code
data described demographics and admission information: age,
length of stay, sex, race, admission source, and discharge
disposition. Race was omitted due to an excessive proportion
of missing values.

For the models of the 2 events, we planned to test
explicitly the performance of ICD-9-CM codes for drug
complications and poisonings. We created dummy variables
that aggregated the codes. Variables were set equal to 1 if any
of these codes were present and 0 otherwise. The complica-
tions and poisoning codes were selected using text searches
of the ICD-9-CM dictionary and from a list compiled by
iterative expert review.12 For deliria, we used codes for
drug-induced mental status changes: 292.0, 292.11, 292.12,
292.2, 292.81, 292.82, 292.83, 292.84, 292.89, and 292.9. For
bleeding and anticoagulation problems, we used codes for
poisoning and adverse effects: 964.2, 964.3, 964.4, 964.5,
964.9, E858.2, E934.2, E934.3, E934.4, E934.5, E934.8, and
E934.9. Additionally, we created a dummy variable indicat-
ing the presence of any code for anemia, thrombocytopenia,
or hemorrhage: 287.4, 287.5, 285, 285.1, 285.8, 285.9, and
459.0. Test characteristics of these dummy variables are
reported for aggregate variables if component codes were
present in either the primary or secondary position, as sub-
mitted for billing purposes. Because analyses on related data
demonstrated that primary diagnoses often represented out-
patient conditions,5,12 we also evaluated aggregate variables
with component codes present only in the secondary position.

For each model, we conducted sensitivity analysis by
exploring the variation in the model’s performance among
hospitals having an a priori reasonable number of admis-
sions in the analysis cohort—50 for bleeding and 100 for
delirium—based on a desire to have a number of either �50 or
the inverse of the ADE’s prevalence in the analysis cohort.
We reported the median and range of values for the selected
hospitals.

Approach to Analysis
We selected HOCTA because it offers several advan-

tages over linear models. Data sets that are not of full rank (ie,
that have R2 values near 100%), and thus induce computa-
tional instability in linear models, are not problematic for
HOCTA due to its hierarchical nature: if no attributes con-
tinue to improve the HOCTA model at a given step in the
procedure, then the procedure is terminated at that point (and
no “bouncing betas” are possible). Similarly, sporadic miss-
ing data are not problematic for HOCTA: an observation with
missing data is omitted from the model only if the observa-
tion is missing data on an attribute used to classify the
observation on that node and downstream. Finally, the ex-
treme skew in the present data (in which ADEs are rare) is not
problematic for HOCTA, as it is for maximum-likelihood or
general-linear-model-based methods, because HOCTA ex-
plicitly maximizes accuracy. Thus, HOCTA models seek to
maximize prediction of both classes, rather than the class with
the largest sample size or the greatest variance. These features of

the analytic framework make HOCTA an excellent fit for gen-
erating surveillance rules from administrative data.

HOCTA was conducted via Optimal Data Analysis
software.7,20 Like all methods derived within the optimal
discriminant analysis paradigm,7 HOCTA explicitly maxi-
mizes accuracy in the analysis sample. HOCTA models begin
with the variable providing best accuracy for the entire
sample, followed by the variable that adds incrementally
most beyond the first, and so forth until no variables add
incrementally to the accuracy achieved. To reduce over-
fitting, attributes were entered into the model only if the
minimum denominator at each branch of the attribute ex-
ceeded 20 observations; a sequentially rejective Bonferroni-
type procedure ensured an experimentwise Type I error of
P � 0.05 for all of the attributes in the model7; and its
performance in accurately classifying observations did not
decline in jackknife analysis. Jackknife analysis was per-
formed at each node by holding out each observation, devel-
oping a significant model using the same attribute, and then
classifying the held-out observation with the resulting model.
If the combined accuracy of jackknife classifications was at
least as good as the whole-sample model, the node was
considered jackknife stable. The purpose of this jackknife
procedure is to reduce bias introduced by idiosyncratic values
and reduce the shrinkage in accuracy when the model is
applied to other data.21

In addition to computing the positive predictive value
(PPV) of the model, results within the optimal discriminant
analysis paradigm are typically reported in terms of the Effect
Strength for Sensitivity (ESS), the targeted measure of accu-
racy. In a system with a binary class variable (eg, ADE
present or absent), ESS is computed as: ESS � �(sensitivity �
specificity)/2 � 50�/50. ESS is a standardized index of model
classification accuracy on which 0 represents the level of
classification accuracy that is expected by chance, and 1.0
represents perfect, errorless classification; negative values
indicate classification performance worse than expected by
chance.7 We used Stata version 9.2 (College Station, TX) to
determine other performance measures such as the area under
the receiver operator curve (ROC AUC), a more commonly
used measure of discrimination, in this case equal to (sensi-
tivity � specificity)/2,22 and relative risk (RR). Nonparamet-
ric confidence intervals for ESS, sensitivity, and PPV were
computed via bootstrap analysis involving a resample with
replacement for 50% of the number of observations in the
analysis cohort for 10,000 iterations.21

RESULTS
We identified 1676 admissions with diagnoses indica-

tive of drugs potentially causing bleeding and anticoagulation
problems. The at-risk cohort contained 29 of the 30 admis-
sions with ADEs in the full cohort of 3987 admissions. Table
1 lists the test characteristics and measures of association for
selected independent variables. Inspection of the 30 most
accurate variables for the first node (not all listed in Table 1)
revealed that the attributes with the highest ESS were dummy
variables for discharge disposition and thresholds for length
of stay. Only 5 variables were individual CCS codes, whereas
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8 variables were aggregated CCS codes for bleeding and for
exposure to drugs potentially causing bleeding. The perfor-
mance of an aggregate variable comprising all ICD9-CM
codes for drug-induced bleeding or anticoagulation problems
had good PPV at 23% and was strongly associated with the
target problems (RR � 14.7), but had poor sensitivity and
ESS—both at 10%.

Figure 1 depicts the model for ADEs manifested as
bleeding or anticoagulation problems. We found a classifica-
tion tree using 8 nodes. The tree segregated into 2 parts
depending on whether there was a secondary ICD-9-CM code
present for a bleeding or anticoagulation problem. If there
was such a code, an ADE was predicted in 2 cases: where
there was no nonhemorrhagic anemia and either an induced
coagulopathy or a complication of surgical procedures or
medical care. If there was no secondary code present for a
bleeding or anticoagulation problem, an ADE was predicted
if either length of stay (LOS) was �4 days and there was a
complication; or if LOS was �4 days and the patient was a
woman with cardiac dysrhythmias or anyone with a disorder

of lipid metabolism. The model had excellent discrimination:
ESS � 0.747 �95% confidence interval (CI): 0.746–0.748�, sen-
sitivity � 86.4% (95% CI: 85.9–86.8), specificity � 89%, and
ROC AUC � 0.87. The prevalence of the ADE in the at-risk
cohort was 1.7%. Although the positive likelihood ratio was
good at 7.5, PPV was 11.5% (95% CI: 11.4–11.7). In the
sensitivity analysis, there were 8 hospitals with more than 50
at-risk admissions (range, 52–113 admissions). The median
point estimates of various performance characteristics were
as follows: ESS � 0.84 (range, 0.61–0.94%); sensitivity �
100% (range, 75–100%); specificity � 85% (range, 77–
93%); ROC AUC � 92% (range, 80–97%); PPV 13% (range,
5–33%).

For the delirium model, we used the entire cohort of
3987 admissions. Table 2 lists the test characteristics and
measures of association for selected independent variables at
the first node. As with the bivariate analysis for bleeding,
non-ICD-9-CM variables ranked highest in accuracy. CCS
codes ranked no higher than the 47th most accurate variable.
Aggregate variables of ICD-9-CM codes that indicated drug-

TABLE 1. Bivariate Analysis for the First Attribute of the Model for Bleeding and Anticoagulation Problems

Selected Variables ESS
Prevalence

(%)
Sensitivity

(%)
Specificity

(%)
ROC
AUC

PPV
(%) RR P*

Aggregate event variable of ICD-9-CM code in secondary
position for bleeding or anticoagulation problem†

0.36 13 48 88 0.68 6.5 6.28 0.0000

Length of stay �5 d 0.33 47 79 54 0.67 2.9 4.35 0.0004

Acute posthemorrhagic anemia (CCS D-60) 0.30 5 34 95 0.65 11.6 9.73 0.0000

Length of stay �8 d 0.30 19 48 81 0.65 4.3 3.91 0.0001
†Complications of surgical procedures or medical care (CCS

D-238)
0.28 10 38 90 0.64 6.4 5.31 0.0000

Discharged to another short-term hospital �0.26 60 34 39 0.37 1.0 0.35 0.0043

Age �75 yr 0.24 35 59 66 0.62 2.9 2.66 0.0066

Exposure variable of acquired/induced coagulopathy† 0.21 7 28 94 0.61 7.1 5.32 0.0000

Blood transfusion (CCS P-222) 0.21 7 28 94 0.61 7.1 5.32 0.0000

Length of stay �4 d† 0.21 69 90 31 0.60 2.2 3.83 0.0167

Cardiac dysrhythmias (CCS D-106)† 0.21 21 41 79 0.60 3.4 2.64 0.0070

Discharged to home under home health services 0.20 15 34 85 0.60 4.0 2.96 0.0033

Aggregate exposure variable of ICD-9-CM codes for
coronary or cerebral vascular disease

0.15 41 55 60 0.57 2.3 1.79 0.1093

Aggregate exposure variable of ICD-9-CM codes for
non-vascular surgery for which anticoagulation is indicated

0.14 10 24 90 0.57 4.1 2.78 0.0130

Aggregate exposure variable of ICD-9-CM codes for vascular
surgery for which anticoagulation is indicated

0.13 8 21 92 0.56 4.5 3.03 0.0104

Coagulation and hemorrhagic disorders (CCS D-62) 0.13 5 17 96 0.56 6.6 4.39 0.0009

Gastrointestinal hemorrhage (CCS D-153) 0.12 5 17 95 0.56 5.6 3.71 0.0038

E codes: Place of occurrence (CCS D-2621) 0.11 7 17 94 0.55 4.5 2.94 0.0204

Male† �0.11 45 34 55 0.45 1.3 0.65 0.2593

Aggregate exposure variable of ICD-9-CM codes for
inflammatory conditions for which anticoagulation is
indicated

0.10 14 24 86 0.55 2.9 1.91 0.1249

Discharge to home or self-care 0.10 4 14 96 0.55 6.0 3.84 0.0066

Pleurisy; pneumothorax; pulmonary collapse (CCS D-130) 0.10 8 17 93 0.55 4.0 2.56 0.0452

Aggregate ADE variable of ICD-9-CM codes in any position
for drug-induced bleeding or anticoagulation problem

0.10 1 10 99 0.55 23.1 14.76 0.0000

*P value is for the relative risk.
†Variable included in the final model.
ICD-9-CM indicates International Classification of Diseases, 9th Revision Clinical Modification; ROC AUC, receiver operator characteristic area under the curve; PPV, positive

predictive value; ESS, effect strength for sensitivity; RR, relative risk; CCS, Clinical Classification System single level code; D-x, diagnostic code; P-x, procedure code.
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FIGURE 1. Classification tree model for bleeding and coagulation problems. The entire sample is included in the first node,
and the unclassified portion of the population is carried down the tree. Secondary bleeding code indicates a code for anemia,
thrombocytopenia, or hemorrhage in the secondary position. * Signifies aggregate variables constructed by the authors. † Indicates
Clinical Classification System codes.

TABLE 2. Bivariate Analysis for the First Attribute of the Model of Drug-Induced Delirium

Selected Variables ESS
Prevalence

(%)
Sensitivity

(%)
Specificity

(%)
ROC
AUC

PPV
(%) RR P*

Length of stay �3 d† 0.44 51 94 50 0.72 2 16.52 0.0000

Length of stay �5 d† 0.42 22 64 78 0.71 3 6.20 0.0000

Age �55 yr 0.42 39 81 61 0.71 2 6.49 0.0000

Length of stay �4 d 0.41 32 72 69 0.70 2 5.60 0.0000

Age �75 yr† 0.37 19 56 81 0.68 3 5.35 0.0000

Length of stay �6 d 0.34 17 50 84 0.67 3 5.06 0.0000

Discharged to another short-term hospital �0.24 77 53 23 0.38 1 0.34 0.0007

Age �20 yr �0.24 26 3 74 0.38 0 0.08 0.0013

Congestive heart failure; nonhypertensive (CCS
D-108)

0.18 10 28 90 0.59 3 3.48 0.0003

Discharged to home under home health services 0.17 8 25 92 0.59 3 3.83 0.0002

Liveborn (CCS D-218) �0.15 15 �1 85 0.42 0 0.00 0.0112

Normal pregnancy and/or delivery (CCS D-196) �0.14 14 �1 86 0.43 0 0.00 0.0148

Fluid and electrolyte disorders (CCS D-55) 0.14 14 28 86 0.57 2 2.32 0.0196

Any ICD-9-CM code indicative of drug-induced
delirium or psychosis

0.14 �1 14 100 0.57 28 35.56 0.0000

Admitted through the emergency room �0.12 94 81 6 0.44 1 1.61 0.1654

Substance-related mental disorders (CCS D-67) 0.12 8 19 92 0.56 2 2.83 0.0094

Any ICD-9-CM code indicative of drug-induced
delirium or psychosis in the secondary position

0.11 �1 11 100 0.55 31 38.21 0.0000

Diabetes Mellitus (CCS D-50)† 0.08 4 11 97 0.54 3 3.41 0.0134

*P value is for the relative risk.
†Variable included in the final model.
ICD-9-CM indicates International Classification of Diseases, 9th Revision Clinical Modification; ROC AUC, receiver operator characteristic area under the curve; PPV, positive

predictive value; ESS, effect strength for sensitivity; RR, relative risk; CCS, Clinical Classification System single level code; D-x, diagnostic code.
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induced delirium or psychosis were not accurate or sensitive
in classifying which admission had an ADE (ESS and sensi-
tivity � 0.14 for codes in any position), yet they had among
the highest measures of association with an ADE (RR �
49–55) and good predictive value (PPV � 28–31%).

Figure 2 depicts the model for ADEs manifested as
delirium and psychosis. Using 4 nodes, the HOCTA model
predicted drug-induced delirium if LOS was �3 days and the
patient was older than 75 years or had diabetes mellitus; or if
LOS was �5 days. The model had good accuracy: ESS �
0.652 (95% CI: 0.651–0.654); sensitivity � 94.4% (95% CI:
94.2–94.6), specificity � 71%; and ROC AUC � 0.83. The
prevalence of the ADE was 0.95%, or 9.5 events per 1000
admissions. Despite a positive likelihood ratio of 3.2, PPV
was low at 2.93% (95% CI: 2.90–2.96). Forcing inclusion of
the aggregate variable indicative of a drug-induced delirium
degraded the HOCTA model’s performance. Of the 41 hos-
pitals in the main cohort, the sensitivity analysis included 11
sites having over 100 admissions (range, 112-296). In this
analysis, the median point estimates of various performance
characteristics were as follows: ESS � 0.67 (range, �0.26 to
0.70); sensitivity � 1% (range, 0–1%); specificity � 69%
(range, 63–73%); ROC AUC � 84% (range, 36–85%); PPV
4% (range, 0–8%). These medians and ranges did not change
substantially when the required minimum number of admis-
sions was raised to 150.

DISCUSSION
We explored the ability of HOCTA to produce accurate

models for ADEs when it was applied to all available admin-
istrative data. We sought models that could be used to screen
charts for finding targeted ADEs and to be used as PSIs for
estimation of ADE rates. HOCTA was able to produce

clinically meaningful, accurate models for both drug-induced
bleeding problems and delirium. The model for bleeding
problems used an at-risk cohort and was superior to the model
for delirium that addressed all admissions. In contrast to
current AHRQ PSIs, none of the models included aggregate
variables limited to adverse event codes.

The bleeding model exemplified the ability of HOCTA
to produce clinically meaningful rules.23 Two nodes com-
bined as a marker of the targeted ADE: a secondary code for
bleeding and a following exception for nonhemorrhagic ane-
mia. Female sex is an independent risk factor for bleeding on
anticoagulation.24 Codes for complications and longer LOS
are nonspecific indicators of complications. An aggregate
variable for induced coagulopathies doubled as an indicator
of more intensive exposure to causative drugs and as a marker
for the targeted ADE. Cardiac dysrhythmias and lipid disor-
ders—the latter being a surrogate for coronary artery dis-
ease—are additional indicators of more intensive anticoagu-
lant exposure. These variables for exposure help compensate
for our imperfect estimation of drug exposure. As explained
in the Methods section, we established the at-risk cohort
using ICD-9-CM codes likely to be associated with the
administration of drugs potentially causing bleeding. Because
the at-risk indicator was positive if any of the selected codes
were present, all codes had equal weight. The indicators of
more intensive exposure define partitions at increased risk.

In addition to being clinically meaningful, the bleeding
model may also be useful. The model’s accuracy was excel-
lent and sensitivity was very good. When applied to small
samples of admissions from individual hospitals, none of
these performance values decreased by more than 25%. We
expect increased stability with adequate sample sizes. The
model’s main limitation was moderately low PPV, which
reflected the very low incidence proportion of events. None-
theless, high sensitivity and accuracy with acceptable PPV
make the model suitable for retrospective screening of patient
charts for quality improvement efforts. The number needed to
screen to find 1 admission with drug-induced bleeding or
anticoagulation problems is just over 8 compared with over
100 without the model. The model’s favorable performance
characteristics and its reliance on markers for the targeted
ADE may allow it to be used as a PSI to estimate rates of
ADEs. The model would overestimate the true ADE rate by
a factor of 8, but the crude rate of predicted ADEs could be
adjusted to account for imperfect PPV and sensitivity. Further
study is necessary to establish the reliability and appropriate
risk adjustment of the model before it is used as a PSI.25

The delirium model was clinically meaningful but did
not perform well. It was largely based on age and LOS, 2
known risk factors for the development of delirium.16 Longer
LOS is also a nonspecific marker for complications during the
hospitalization. Diabetes mellitus may function in the model
as an indicator of higher morbidity from chronic disease.
Aside from its clinical interpretation, the quantitative perfor-
mance of this model was disappointing. Sensitivity was
excellent, but PPV was very low. Moreover, the sensitivity
analysis of a small sample of admissions at each hospital
demonstrated wide performance variation. Despite this model’s

FIGURE 2. Classification tree model for delirium and psycho-
sis. The entire sample is included in the first node, and the
unclassified portion of the population is carried down the
tree. † Indicates Clinical Classification System codes.
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low PPV and concerns about its generalizability for rate
estimation, its high sensitivity may allow it to be a useful tool
for screening patient charts. The number needed to screen to
find 1 admission with drug-induced delirium is about 30, less
than the 100 that would otherwise be necessary. This benefit
is modest, but the PPV is within the range of other models in
current use for ADE surveillance.26 This sensitive model may
best be used in conjunction with other surveillance rules
designed for retrospective chart review.27 Finally, the delir-
ium model is not suitable for a PSI. A very low PPV would
require a high discount factor of nearly 97% to estimate the
rate of drug-induced delirium. This high discount factor and
the lack of clinically specific markers for delirium decrease
the likelihood that the model will be responsive to changes in
the true rates of ADEs.

This report illustrates several lessons for modeling
sparse ADEs in administrative data. First, the estimation of an
at-risk cohort facilitated an improved model for bleeding and
anticoagulation problems. Without an at-risk cohort, the best
model we created for drug-induced bleeding had performance
characteristics approximating those of the delirium model.
Second, grouping the codes into clinically meaningful pre-
dictors also improved the resulting model’s performance by
reducing the sparseness of relevant, positive variables. Third,
code-related markers for ADEs performed better if the codes
were submitted for billing in a secondary position. This
reflects the finding of others that ADE codes in the primary
diagnostic position often represent outpatient ADEs.12 Fi-
nally, non-ICD9-code administrative data such as age, length
of stay, and discharge disposition may be the most important
variables of models, as was the case for delirium.

Although questions remain about the validity of models
generated in this report, the models have been empirically
derived and in contrast, all of the AHRQ PSIs were devel-
oped and validated by expert consensus with empirical sup-
port.4,5 Many have undergone empiric validation of PPVs. At
the time of this writing, however, there was only 1 report of
a validated PSI using a cohort sample.28 The sensitivity and
specificity of the other PSIs remain unknown. As with the
HOCTA models, questions remain about responsiveness of
PSIs to changes in rates of the targeted event.25

There are several limitations to this study. First, the
models were developed and validated for inpatients in Utah
hospitals and may not replicate in other states with different
coding practices and data structures. Second, model valida-
tion was limited to jackknife methods for model develop-
ment. Whole-sample validation, through exploration of all
possible models using bootstrap methods at the stage of
model development, is not computationally practical. Using a
split-sample validation set was not practical due to low
prevalence of the dependent variables. Third, the models may
be over fit. We attempted to minimize this outcome by using
procedures to ensure jackknife stability and experimentwise
statistical significance. The requirement of at least 20 obser-
vations at each branch further reduces the likelihood of over
fitting. HOCTA is not subject to the empirically based rule of
thumb of 10 cases per variable developed for linear models.29

There are 16 cells in the design matrix of the HOCTA model
for bleeding. There would be 28 or 256 cells in the design
matrix if logistic regression were used; most of these cells
would have been empty. Fewer cells in the HOCTA design
matrix highlights the suitability of HOCTA for modeling data
with sparse independent and dependent variables.30 Finally,
the ICD-9-CM codes for exposure to drugs potentially caus-
ing bleeding were derived from literature review and aggre-
gated into 1 exposure indicator. This exposure variable would
be better specified as an empirically derived and validated
model itself.

In conclusion, these results demonstrate the ability of
HOCTA to produce accurate and clinically meaningful mod-
els for selected ADEs from large data sets with sparsely
positive independent and dependent variables. Non-ICD-9-
code administrative data describing patient demographics and
hospitalization information may be central to these models. In
contrast, ICD-9-CM codes designed for ADEs and poisoning
lacked discrimination and were excluded from these models.
Development of models was greatly facilitated by focusing
on the group estimated to be exposed to drugs capable of
causing the targeted ADE. The application of HOCTA to all
available administrative data is a promising approach for the
development and validation of PSIs for ADEs.
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