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A Simulation-Based Evaluation of Methods to Estimate
the Impact of an Adverse Event on Hospital Length of Stay
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Introduction: We used agent-based simulation to examine the
problem of time-varying confounding when estimating the effect of
an adverse event on hospital length of stay. Conventional analytic
methods were compared with inverse probability weighting (IPW).
Methods: A cohort of hospitalized patients, at risk for experiencing
an adverse event, was simulated. Synthetic individuals were as-
signed a severity of illness score on admission. The score varied
during hospitalization according to an autoregressive equation. A
linear relationship between severity of illness and the logarithm of
the discharge rate was assumed. Depending on the model conditions,
adverse event status was influenced by prior severity of illness and,
in turn, influenced subsequent severity. Conditions were varied to
represent different levels of confounding and categories of effect.
The simulation output was analyzed by Cox proportional hazards
regression and by a weighted regression analysis, using the method
of IPW. The magnitude of bias was calculated for each method of
analysis.
Results: Estimates of the population causal hazard ratio based on
IPW were consistently unbiased across a range of conditions. In
contrast, hazard ratio estimates generated by Cox proportional haz-
ards regression demonstrated substantial bias when severity of
illness was both a time-varying confounder and intermediate vari-
able. The direction and magnitude of bias depended on how severity
of illness was incorporated into the Cox regression model.
Conclusions: In this simulation study, IPW exhibited less bias than
conventional regression methods when used to analyze the impact of
adverse event status on hospital length of stay.
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A central challenge for epidemiology and health services
research is to address confounding as effectively as pos-

sible.1–3 Whenever the causal question of interest concerns
the effect of a time-varying exposure or treatment, the poten-
tial for time-varying confounding arises. Time-varying con-
founding is produced when outcome and exposure are influ-
enced by the updated values of a third variable that changes
over time.4 A common setting where time-varying confound-
ing is likely is when disease severity influences the decision
to initiate drug therapy.5

Robins and colleagues5–8 developed a method for es-
timating the causal effect of a time-varying exposure in the
context of an underlying marginal structural model of the
counterfactual outcomes. They applied a regression tech-
nique, called inverse probability weighting (IPW), to the
problem of time-varying confounding. Another term for this
method is inverse probability of treatment weighted estima-
tion. The situation where time-varying confounders are also
intermediate variables produces a dilemma.6,9–11 Failure to
adjust for a time-varying confounder leaves residual con-
founding and may exaggerate an effect estimate. If the time-
varying confounder is also an intermediate variable at the
same time, its inclusion in the analysis as a covariate can
produce bias toward the null.

Experience with IPW in epidemiology and health ser-
vices research has been relatively limited to date, particularly
in comparison to propensity scores, another method for re-
moving confounding due to measured variables.12–17 Few
studies have used simulation to systematically compare IPW
to conventional regression methods when time varying con-
founding is present.9,11,18 The application of IPW to out-
comes research in hospital settings has not been explored. In
this study, we examine the use of IPW in the context of a
significant problem in patient safety and infection control, the
estimation of the impact of an adverse event on cost, and
hospital length of stay.

Many studies have addressed outcomes and costs asso-
ciated with adverse events in hospitalized patients, applying a
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variety of study designs and analytic methods.19–29 Fluctuat-
ing severity of illness is recognized as a likely time-varying
confounder in this situation.30,31 Because severity of illness
may also mediate the effect of the adverse event on subse-
quent length of stay, it is also likely to be an intermediate
variable. To characterize the bias of conventional regression
methods in comparison to IPW when applied to this problem,
we developed a simulation model of the occurrence of adverse
events among hospitalized patients. We sought to define the
conditions under which conventional regression methods may
yield biased results and to illustrate the use of IPW in removing
this bias.32–34

METHODS

Agent-Based Simulation
We used a form of simulation called agent-based mod-

eling, a modeling technique in which individual entities are
assigned internal states. Rules (or behaviors) are encoded to
govern the transitions between states over time. Thus, indi-
viduals are represented directly and populations are estab-
lished as groups of individuals. The advantages of this tech-
nique for this study are its flexibility and its ability to create
completely synthetic data sets suitable for statistical analysis.

The individual agent model was constructed in Any-
logic 5.4 (XJ Technologies, Saint-Petersburg, Russia) using
Java-based code to create replicated objects. A cohort of
patients admitted to a 500-bed hospital during a 1-month
period was simulated. During the simulated hospital stay,
individuals transitioned between 3 states: state 1—hospital-
ized, with no adverse event experienced; state 2—hospital-
ized, with an adverse event experienced; state 3—discharged.
All patients were in state 1 at the beginning of observation
(time of admission). During the hospital stay, individuals in
state 1 were eligible to transition to state 2 but not vice versa.
That is, once the adverse event was experienced, the adverse
event status variable was set to the value of 1 for the remainder
of the hospitalization. Simulated patients moved from either of
the hospitalized states to the discharged state. Death was com-
bined into the discharge state in the simulations presented here to
avoid problems related to competing risks. Individuals were
removed from observation after entering the discharge state.

Each run of the agent-based model generated a syn-
thetic data set. At intervals of 0.25 time units, each simulated
individual’s updated values for adverse event status, severity
of illness, and discharge status, were appended to a table. The
simulation was calibrated for 1 time unit to indicate 1 day.
Thus, 0.25 time units represented 6 hours.

The discharge rate was modeled as a hazard function,
using the following equation:

��t) � �0(t) exp{�1V(t) � �2A(t)}

where �0(t) represented the baseline hazard rate of discharge
as a cubic spline function of time since admission, A(t) was
adverse event status at time t, V(t) was the severity of illness
score at time t, �1 represented the individual � coefficient for
the effect of severity of illness on log hazard rate of dis-

charge, and �2 equaled the beta coefficient for the direct
effect of adverse event status on log hazard rate of discharge.
The values for V(t) and A(t) were updated at intervals of 0.25
days. Modeling the baseline discharge hazard rate with a
cubic spline function allowed more flexibility than alternative
parametric forms. The coefficient �1 was assigned a value
of �1.0 (Table 1). Therefore, for each unit increase in
severity of illness score, an individual’s discharge hazard rate
decreased by 63%. When �2 was set to 0, adverse event status
did not have a direct effect on the discharge hazard rate.

Synthetic patients were assumed to vary with respect to
severity of illness, the consequence of which was heteroge-
neity across individuals in the hazard rates of discharge. The
value of the severity of illness score depended on baseline
severity of illness, recent prior severity of illness, and adverse
event status. On admission, each individual was assigned a
baseline severity of illness score, drawn from a normal distribu-
tion, with mean 0 and standard deviation s. The severity of
illness V(t) was updated at intervals of 0.25 time units using a

TABLE 1. The Parameter Values Used in the Simulation Are
Listed (See Methods for Details)

Values
Model

Conditions

Discharge rate equation

Coefficient for the effect of a
unit increase in severity of
illness on logarithm of the
discharge hazard rate, �1

�1 All

Coefficient for direct effect
of adverse event on
logarithm of the discharge
hazard rate, �2

0 No effect
Indirect effect

only
Dual effect

0

�0.693

Severity of illness equation

Standard deviation of
baseline severity, s

1 All

First order autoregressive
coefficient, c

0.5 All

Ratio of second to first order
autoregressive coefficient, f

0.67 All

Standard deviation of random
error term, z

1 All

Coefficient for effect of
adverse event status on
severity, �3

0 No effect
Indirect effect

only
Dual effect

0.693

0.693

Adverse event equation

Intercept, � �4.5 All

Factor that influences adverse
event, V�(t)*

Independent
score

Baseline
severity

Lagged
severity

No confounding
Baseline

confounding
Time-varying

confounding

Coefficient for effect of
V�(t) on logarithm of
the odds of occurrence of
adverse event, �4

1 All

*See text for details.
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second order autoregressive equation,35 as a compromise be-
tween complexity and over-simplification:

V(t) � V(0) � c(V(t � 0.25) � �) � cf(V(t � 0.5) � �)

� �3A(t) � �,

where V(0) equaled the individual’s baseline severity of
illness, V(t � 0.25) equaled the first-order lagged severity,
V(t � 0.5) equaled the second-order lagged severity, c
equaled the first-order autoregressive coefficient; f equaled
the ratio of the second-order autoregressive coefficient to the
first-order autoregressive coefficient; � was an error term,
drawn from a normal distribution with mean 0 and standard
deviation z; �3 represented the indirect effect of adverse
event status on discharge hazard rate, mediated through
severity. For the first-order lag term, � equaled V(0) � �3A
(t � 0.25) and for the second-order lag term, � equaled V(0) �
�3A(t � 0.50), where A(t � 0.25) and A(t � 0.50) were the
first- and second-order lagged values for adverse event status.

This equation was structured to produce a well-defined
relationship between adverse event status and subsequent
severity. Before occurrence of the adverse event, the mean
value of V(t) equaled V(0). After occurrence of the adverse
event, the mean value of V(t) equaled V(0) � �3. For
synthetic individuals who experienced the adverse event, this
effect was assumed to be constant for the remainder of
hospitalization. When �3 was set to 0, the indirect effect of
the adverse event on discharge hazard rate was removed.
Severity of illness was assumed to be constant between
intervals of 0.25 days. In practice, severity of illness is not
likely to be measured at intervals more frequently than 4
times per day.

Adverse event status was a time-varying exposure.
Confounding was produced by allowing severity of illness to
influence the risk of experiencing an adverse event. The
probability (risk) of experiencing an adverse event during the
time interval between t and t � 0.25 was modeled as a
logistic equation:

R(V(t)) � exp(� � �4V�(t))/�1 � exp(� � �4(V�(t))�,

where V�(t) represented 1 of 3 alternative forms of severity of
illness and �4 equaled the � coefficient for its effect on the
logarithm of the odds of experiencing an adverse event during
the next time interval. When V�(t) was specified to be the
lagged severity of illness score (V(t � 0.25)), time varying
confounding was produced. To engender baseline confound-
ing alone, V�(t) was specified as the value of severity of
illness at the time of admission (V(0)). To abolish confound-
ing, V�(t) was set equal to an independent score with the same
distributional characteristics as severity of illness. The inde-
pendent score did not influence the discharge hazard rate and
was uncorrelated with severity of illness.

Model Conditions
The simulations were varied across 2 dimensions. One

dimension was the impact of the adverse event on the hazard
rate of discharge. Either the adverse event had no impact on
discharge or the effect was indirect only or the effect was

dual, indirect plus direct. Within each of these groups, the
simulations were varied with respect to confounding (none,
baseline only, time-varying). Thus, simulations were exe-
cuted under 9 different conditions. We constructed directed
acyclic graphs (DAGs)36,37 corresponding to these condi-
tions, which are depicted in Figures 1A and B.

Parameter values used in the simulations are displayed
in Table 1. The discharge hazard rate was set to produce an
average length of stay of approximately 5.5 days when the
adverse event did not have an effect and confounding was
absent. Adverse event risks were calibrated such that approx-
imately 30% of synthetic individuals experienced an adverse
event. In all simulations, each unit increase of severity of
illness decreased the hazard of discharge by 63%.

A total of 250 replications were executed for each of
the 9 conditions, using a random seed that varied randomly
from run to run. Each replication produced a data set of
synthetic patients admitted to a hospital during a 1-month
period, run until all subjects were discharged. The standard
errors for the mean hazard ratio (HR) (for each set of

FIGURE 1. A, A directed acyclic graph that corresponds to
the unconfounded simulations is depicted. The lack of influ-
ence of lagged severity of illness �V(t � 0.25)� on adverse
event status at time t �A(t)� is reflected by the absence of an
arrow between these 2 variables. The dashed arrows corre-
spond to the indirect and direct causal pathways from the
adverse event to the discharge hazard rate �D(t)�. B, This di-
rected acyclic graph corresponds to simulations with time-
varying confounding. Lagged severity of illness influences
the probability of occurrence of an adverse event during the
next time interval.
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conditions) were calculated by dividing the standard devia-
tion by the square root of 250.

Cox Proportional Hazards Regression
Cox proportional hazards regression was applied to

each synthetic data set to estimate the HRs for the exposure
of interest, adverse event status. The outcome was discharge.
For each run, 4 Cox models were fit that differed according to
the included covariates: (1) adverse event status alone; (2)
adverse event status plus baseline severity; (3) adverse event
status plus lagged severity of illness as a time varying
covariate; and (4) adverse event status plus lagged severity
frozen during the postadverse event follow-up at its level
before occurrence of the adverse event.

IPW
We performed a weighted regression analysis based on

IPW. This method is related to the inverse weighting tech-
niques that are used in survey statistics to account for unequal
sampling probabilities. Weighting by the inverse of the prob-
ability of being sampled allows each observation to statisti-
cally represent the nonsampled members of a population.
Robins et al5,6,9 extended IPW to address the problem of
time-varying confounding, in the context of an underlying
marginal structural model. The model posits the existence of
counterfactual variables to represent what would have hap-
pened to subjects under alternative levels of exposure or
treatment. The observed portion of the data constitutes the
exposure or treatment actually experienced; exposure or treat-
ment not experienced is unobserved. Exposure status is guar-
anteed to be independent of history in the full (counterfactual)
data set, because every subject experiences all levels of
exposure. In the full data set, the association between expo-
sure and outcome is unconfounded. In contrast, when expo-
sure status is influenced by covariates, the observed data are
a nonrandom sample of the full data set. The purpose of IPW
is to quantify the number of unrealized observations in the
full data set represented by each realized observation, thereby
restoring the independence of exposure status and covariate
history.

To perform IPW, a logistic regression model was fitted
to the data to estimate the probability of experiencing an
adverse event given lagged severity, baseline severity, and
time from admission. This value was, in turn, used to estimate
the probability of each individual’s observed adverse event
status at each time interval. For instance, among individuals
who never experienced an adverse event, or had not yet
experienced an adverse event, the probability of the observed
adverse event status was equal to 1 minus the probability of
experiencing an adverse event. The inverse of the probability
of the observed adverse event status history up to the current
time, given baseline severity, lagged severity, and time from
admission represented the unstabilized weight. The weight
was stabilized by using as the numerator the estimated prob-
ability of the individual’s observed adverse event status
history, given only baseline severity and time from admis-
sion.38,39 The denominators of the stabilized and unstabilized
weights are the same. The amount of variation of stabilized

weights is an indication of the degree to which confounding
is potentially time-varying.39

Pooled logistic regression was fitted incorporating
the calculated stabilized weights to approximate estimates
of the marginal structural Cox model. A natural cubic
spline was used to model the time intercepts (each quarter
of a day is 1 intercept for the logistic regression) with
knots at 5th, 27.5th, 50th, 72.5th, and 95th percentile.
Odds ratios derived from pooled logistic regression ap-
proximate HRs when the risk at each interval is less than
10%.40,41 In this simulation, the interval-specific risks
were less than 10%.

Estimation of Bias
The beta coefficients (�1, �2, and �3) specified in the

simulation represented individual-level effects on discharge
hazard rates (individual causal HRs). However, Cox propor-
tional hazards regression estimates population-level (mar-
ginal) associations. Parameter estimates generated by IPW
are interpretable as population-level causal effects, linked to
an underlying marginal structural model. Therefore, we con-
sidered the target parameter to be the population causal HR
for the effect of the adverse event on discharge, rather than
the individual causal HR.

Our goal was to estimate the true population causal HR
to estimate bias. To guarantee exchangeability of populations,
a synthetic population of 200,000 individuals was randomly
assigned to experience the adverse event at the beginning of
hospitalization (time 0) or to never experience the adverse
event. A Cox proportional hazards regression model, which
included terms for the adverse event and baseline severity of
illness, was then fit to the synthetic data. This procedure was
performed for each category of effect of the adverse event:
(1) no effect; (2) indirect effect only; (3) dual indirect and
direct effect.

The magnitude of bias for each analytic method for
each of the 9 conditions was calculated by dividing the
mean HR (derived from the 250 runs of the simulation) by
the estimated population causal HR for the corresponding
category of effect. Values less than 1 indicated bias away
from the null, values of 1 indicated an absence of bias, and
values greater than 1 indicated bias toward the null.42 In
this simulation, confounding produced unadjusted HR es-
timates that were deviated away from the null.

It should be noted that the population causal HR does
not equal the individual causal HR when there is uncon-
trolled heterogeneity of the hazard rate. The phenomenon
of uncontrolled heterogeneity is called the frailty effect in
survival analysis. In this simulation, the variation in se-
verity of illness represented uncontrolled heterogeneity.
Another consequence of uncontrolled heterogeneity is that
the population causal HR is not proportional. Therefore,
the estimated population HR should be interpreted to be an
approximation of the average population causal HR during
follow-up.

Incorporation of individual random effects into a
survival analysis potentially allows estimation of the indi-
vidual HR under the assumption that the model is correctly
specified. We did not explore these models in detail
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because the frailty analysis targets a different parameter
than IPW.43,44 To feasibly fit an individual frailty model, it
also would have been necessary to assume a parametric
form for the hazard function. The practical value of indi-
vidual frailty models has been questioned because of
problems of identifiabilty.45 Most frailty models do not
retain the proportional hazards assumption.44

RESULTS

Descriptive Analyses
The results of each simulation run varied stochastically.

Depending on the conditions, the average number of syn-
thetic individuals per run ranged from 1793 to 2590 and the
overall average length of stay ranged from 4.05 to 11.18
(Table 2). The fraction of synthetic individuals who experi-
enced an adverse event ranged from 24% to 35%. Even when
confounding was absent and the adverse event itself had no
effect, length of stay was longer in individuals who experi-
enced an adverse event (10.51 days), compared with individ-
uals who did not experience an adverse event (3.62 days).
The reason for this difference was that individuals who
remained in the hospital had longer period of risks for
occurrence of an adverse event.

The relationship between prior severity of illness and
occurrence of the adverse event depended on the simulation
conditions. When confounding was absent, adverse event
status was not associated with prior severity of illness (odds
ratio � 1). Similarly, longitudinal models with adverse event
status as the predictor and severity of illness as the outcome
yielded results that depended on whether the adverse event
had an effect on severity of illness. When the adverse event
did not have an effect on severity and confounding was
absent, adverse event status was not associated with severity.

Impact of the Adverse Event on Discharge
Hazard Rate
Cox Proportional Hazards Regression

For each of the 250 runs for each set of simulation
conditions, 4 different Cox proportional hazards regression
models were fit to estimate the effect of adverse event status
on discharge (Table 3). Aggregating results across the 250
runs produced small standard errors around the estimate of
the HR, less than 0.005 for all models. Therefore, for each set
of conditions, the 95% confidence intervals of the HR were
narrow, encompassing a range within 0.015 above and below
the mean HR.

As explained in the Methods, the population causal HR
and the individual ratio of hazards were discordant because of
individual heterogeneity (frailty). The results of Cox propor-
tional hazards regression for unconfounded simulations re-
flected this discrepancy. In the “unconfounded-indirect ef-
fect” simulation, the crude HR estimated by Cox was 0.6,
whereas the ratio of individual hazards was 0.5. In the
unconfounded-dual effect simulation, the crude HR was 0.40
whereas the ratio of individual hazards was 0.25. Including
baseline severity as a covariate brought the Cox-derived
HR estimate closer to the individual ratio of hazards
because it removed a portion of the heterogeneity in
background hazards.

When only baseline confounding was present, the crude
(unadjusted) HR was 0.61 when the population causal HR
was 1.0; 0.37 when the population causal HR was 0.58; and
0.23 when the population causal HR was 0.36. Thus, the bias
which was calculated as the estimated HR divided by true
HR, ranged from 0.61 to 0.64. Adding baseline severity as a
covariate to the Cox proportional hazards regression model
effectively removed the bias (range, 1.00–1.03).

When time-varying confounding was present, the crude
(unadjusted) HR was 0.45 when the population causal HR

TABLE 2. Summary Statistics Derived from 250 Replicate Runs for Each Set of Conditions

Simulation Conditions
(Average of 250 Simulations Each)

Adverse Event
Experienced

Adverse Event
not Experienced Total

N
Mean

Length of Stay N
Mean

Length of Stay N
Mean

Length of Stay

Adverse event effect

Confounding by severity

None

None 758 10.51 1832 3.62 2590 5.63

Baseline only 632 12.76 1954 3.34 2586 5.64

Time-varying 912 11.45 1668 2.52 2580 4.05

Indirect only

None 663 15.57 1594 3.60 2257 7.12

Baseline only 549 19.71 1692 3.35 2241 7.36

Time-varying 760 17.22 1385 2.52 2145 7.73

Indirect and direct

None 576 23.82 1382 3.64 1958 9.58

Baseline only 484 30.19 1480 3.35 1964 9.97

Time-varying 634 27.00 1158 2.53 1793 11.18
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was 1.0; 0.27 when the population causal HR was 0.58; and
0.17 when the population causal HR was 0.36. These crude
HR estimates exhibited bias that ranged from 0.45 to 0.47. In
this setting, all of the other HR estimates generated by Cox
proportional hazards regression exhibited substantial bias,
either toward or away from the null, depending on how
severity of illness was included in the Cox regression model.
When baseline severity was included as a covariate, the
manifested problem was residual confounding (magnitude of
bias: 0.64–0.65). Including lagged severity or frozen severity
as a covariate produced bias in the opposite direction, toward
the null (range of bias, 1.25–1.59).

IPW
For simulations, which lacked confounding or were

constructed to possess only baseline confounding, the stabi-
lized weights generated by the IPW method were clustered
around 1 (0.95–1.05). For simulations in which time varying
confounding was present, the stabilized weights ranged from
0.018 to 40.19. The range of stabilized weights reflected the
high degree to which time-varying severity of illness was
predictive of the adverse event.

Regardless of the presence or absence of confounding
and whether the confounding was baseline or time-varying,
IPW generated estimates of the HR for adverse event status
that were unbiased or minimally biased (range of bias, 0.97–
1.04; Table 3). Thus, when only baseline confounding was
present, IPW performed comparably to the Cox proportional
hazards regression models, which included baseline severity
as a covariate; the differences in mean HR were less than
0.015. When time-varying confounding was present, the HR
estimates generated by IPW were substantially less biased
than all of the Cox proportional hazards regression estimates.

DISCUSSION
We used agent-based simulation to illustrate the appli-

cation of IPW to the clinically relevant scenario of hospital-
ized patients who are at risk for experiencing an adverse
event such as nosocomial infection or adverse drug reaction
or other medical injury. Our goal was to identify methods that
yield unbiased estimates of the effect of the adverse event on
discharge rates. An estimation of effect on length of stay is a
necessary part of the evaluation of impact of adverse events
on costs. In the many studies that have examined this is-
sue,46–48 severity of illness has been recognized as a potential
confounder. However, the implications of time-varying con-
founding have not been adequately addressed.

The simulation demonstrated that fitting Cox propor-
tional hazards regression models which included severity of
illness as a time-varying covariate, yielded estimates of effect
that were biased toward the null when time varying con-
founding was present. Cox models fit with baseline variables
only were also biased, but in the opposite direction. In
contrast, IPW provided an unbiased estimate of the popula-
tion effect of the adverse event on discharge rate across a
range of simulation conditions.

Regardless of whether IPW or conventional regression
methods are used, an assumption of no unmeasured con-
founding is necessary. With real data, the magnitude of bias
associated with a particular method of analysis cannot be
known with certainty. In any given study, Cox proportional
hazards regression may or may not produce biased effect
estimates. Because measures of severity are approximations
of “true” severity, biases due to residual confounding and to
blocking of an intermediate variable may cancel each other
out. An advantage of IPW is that lack of bias does not depend
on this type of chance occurrence.

TABLE 3. Hazard Ratio (HR) Estimates According to Simulation Conditions and Method of Analysis

Model
Ratio of Individual

Discharge Hazard Rates
Population
Causal HR

HR Estimated
from Cox Proportional

Hazards Regression

Weighted
Regression (IPW)Crude

Baseline
Severity

Lagged
Severity

Frozen
Severity

Adverse event effect

Confounding by severity

None 1 1.00

None 1.00 1.00 1.00 1.19 1.00

Baseline only 0.61 1.03 0.91 1.06 1.04

Time-varying 0.45 0.64 0.90 1.59 1.02

Indirect only 0.5 0.58

None 0.63 0.58 0.90 0.66 0.57

Baseline only 0.37 0.59 0.81 0.83 0.59

Time-varying 0.27 0.38 0.82 0.89 0.57

Indirect and direct 0.25 0.36

None 0.43 0.36 0.51 0.41 0.35

Baseline only 0.23 0.36 0.45 0.34 0.35

Time-varying 0.17 0.23 0.45 0.54 0.35

Crude indicates unadjusted analysis; Baseline severity, adjusted for baseline severity; Lagged severity, adjusted for lagged severity; Frozen severity, similar to lagged severity
except that severity frozen at value just before adverse event occurrence; IPW, time-varying severity adjusted.
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A common practice in survival analysis is to evaluate
for confounding on the basis of a comparison of crude and
adjusted HR. However, this procedure may be misleading.
An adjusted HR that is closer to the null than the crude HR
may reflect blockage of an intermediate variable or removal
of positive confounding. The process of performing IPW
yields more information about the potential magnitude of
time-varying confounding than a simple comparison of crude
and adjusted HR. As a method for confounding control, IPW
illustrates the key principle that making exposure indepen-
dent of the measured covariate history removes confounding
due to measured variables. In our study, adverse event status
was independent of lagged severity of illness when a logistic
model was fit using the IPW derived stabilized weights.
When examining events that occur in hospitalized patients, it
may be advantageous to approach confounding by focusing
on factors that influence exposure rather than from the per-
spective of predicting outcome. This framework avoids pit-
falls associated with intermediate variables.

Our simulation highlights the discrepancy between
population and individual effects in the presence of uncon-
trolled heterogeneity, which in this simulation was due to
severity of illness. Heterogeneity in the individual hazards
also typically induces nonproportionality of the population
HR. These manifestations of individual heterogeneity may
represent intrinsic features of effect estimation when time-
varying confounders are also intermediate variables. As dem-
onstrated in this study, removing heterogeneity by adding
severity of illness into the model of the outcome produces
bias toward the null when severity of illness is an interme-
diate variable.

In the simulation described here, an adverse event
influenced hospital length of stay through its effect on dis-
charge rate. We in turn used analytic methods that were
parameterized with respect to discharge HRs. In contrast,
many of the published studies that examined outcomes of
adverse events directly estimated effects in terms of length of
stay or costs, because they used matched cohort study designs
or applied linear regression. However, the matched cohort
design does not solve the problems reported here. Further, it
is associated with other types of biases.49,50

Our simulation incorporated several simplifying as-
sumptions to highlight key underlying principles and to
increase the ease of interpretation. One simplification was
that the impact of the adverse event on discharge rate re-
mained constant. In reality, the effects of an adverse event
likely abate with time, except when a cascading series of new
problems are triggered. The simulation reported here also
ignored the consequence of the competing risk of death.
Application of IPW within a framework of inverse probabil-
ity of censoring makes it possible to address censoring and
competing risks.51 The flexibility of agent-based simulation
supports a range of options for increasing complexity. A
discussion of the analysis of synthetic data generated by
these alternative simulation structures is beyond the scope
of this article.

A simulation study can provide useful insights but it
does not replace collection of real data. The parameter esti-

mates used in this simulation were selected to be plausible.
However, the simulation was not calibrated to a specific data
set, and therefore was not designed to directly estimate the
magnitude of bias therein. Measured indicators of severity of
illness do demonstrate substantial day-to-day variability,
comparable to our simulated severity of illness score.52 In
outcome studies of adverse events in hospitalized patients,
evidence of time-varying confounding has been found.31

In summary, when an exposure occurs during the pe-
riod of observation, the use of IPW can provide a more robust
approach to analysis of observational data than conventional
Cox proportional hazards regression. Unlike propensity scores,
IPW can be readily adapted to account for time-varying
confounders that are also intermediate variables. We have
demonstrated that this is a relevant problem when estimating
the effect of an adverse event on hospital length of stay.
Developing accurate measures of outcomes associated with
different types of adverse events is a critical first step toward
understanding the cost-effectiveness of interventions to pre-
vent or mitigate their occurrence.
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