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This report is based on research conducted under contract to the Agency for Healthcare 
Research and Quality (AHRQ), Rockville, MD. The findings and conclusions in this 
document are those of the author(s), who are responsible for its contents; the findings and 
conclusions do not necessarily represent the views of AHRQ.  Therefore, no statement in this 
report should be construed as an official position of AHRQ or of the U.S. Department of 
Health and Human Services. 

 

The information in this report is intended to help health care researchers and funders of 
research make well-informed decisions in designing and funding research and thereby 
improve the quality of health care services.  This report is not intended to be a substitute for 
the application of scientific judgment. Anyone who makes decisions concerning the provision 
of clinical care should consider this report in the same way as any medical research and in 
conjunction with all other pertinent information, i.e., in the context of available resources and 
circumstances. 

 

This report may be used, in whole or in part, as the basis for research design or funding 
opportunity announcements.  AHRQ or U.S. Department of Health and Human Services 
endorsement of such derivative products may not be stated or implied. 
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Abstract 
Background: In many systematic reviews it is appropriate to summarize proportions and rates 
(e.g., incidence rates) using meta-analysis. For example, researchers commonly perform meta-
analyses of sensitivity and specificity to summarize medical test performance, or of adverse or 
harmful events.  Many statistical methods can be used for meta-analysis of rates and proportions.  

Purpose: To help provide guidance for meta-analysts, we performed an extensive simulation 
study to assess the statistical properties of alternative approaches to meta-analysis of proportions 
and incidence rates. 

Methods: We simulated a large number of scenarios for meta-analyses of proportions and 
incidence rates (n=792 scenarios for each). The distinct scenarios were defined by combinations 
of various factors, including the distributional form for the true summary proportion or rate and 
its defining parameters (mean, variance), the number of studies per meta-analysis, and the 
number of patients per study.  

For each scenario we generated 1000 random meta-analyses, on which we applied fixed and 
random effects analyses for two families of methods: (1) methods that approximate within-study 
variability with a normal distribution: not using a transformation, using a canonical 
transformation (logistic and logarithmic for proportions and rates, respectively), or using a 
variance stabilizing transformation (arcsine and square root for proportions and rates, 
respectively). (2) “discrete likelihood” methods that use the theoretically motivated binomial or 
Poisson distribution to model within study variability. We measured the performance of each 
method based on their mean squared error, bias, and coverage, as compared against the values set 
in the simulation.  

Results: In general, and for both proportions and rates, the discrete likelihood approaches 
performed better than the approximate methods in terms of the three metrics.  

Of the approximate methods, the variance stabilizing variants (arcsine transformation for 
proportions and square root transformation for rates) performed better than the untransformed 
methods or the methods using a canonical link.  

Continuity correction factors are necessary to calculate real-valued means or variances for some 
approximate methods. The bias, mean square error and coverage of these approximate methods 
are very sensitive to the choice of continuity correction factors.  

Conclusions: Discrete likelihood methods are preferable for the meta-analyses of proportions 
and rates. We discourage the use of approximate methods that require continuity corrections, as 
the arbitrary choice of the correction factor can greatly impact on the performance of the method.   
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Background 
Meta-analyses of proportions or rates (e.g., incidence rates) are very often included in 

reports generated by the Effective Healthcare Program, and in systematic reviews in general. For 
example, one would use a meta-analysis of proportions to calculate the summary frequency of 
adverse or harmful events. Depending on the clinical context, adverse events can be rare (e.g., 
the incidence rate of rhabdomyolysis in statin treated patients is approximately 3.3 events per 
100,000 patient years1) or quite common (e.g., the average percentage of nausea and vomiting in 
chemotherapy-treated cancer patients was 48% in a meta-analysis of randomized trials2). Meta-
analysis of proportions can also be applied to evaluate medical test performance. Although a 
bivariate meta-analysis of sensitivity and specificity or summarization with a hierarchical 
summary operating characteristic curve (HSROC) is commonly recommended, separate 
(univariate) meta-analyses may be sufficient when there is little variation in either sensitivity or 
specificity.3 4  

Assuming that it is appropriate to perform a meta-analysis of proportions or rates, many 
open questions remain about which statistical methods are best to use. Generally speaking, we 
can group meta-analytic approaches into two families according to how they model within-study 
variability:  

1) Discrete likelihood methods, which model the proportion of events or the incidence rate in a 
study using the binomial or Poisson distribution, respectively. These are theoretically 
motivated choices. 

2) Approximate methods, which approximate within-study variability with a normal 
distribution. Of the many variants that have been used, the three that are most interestinga use 
a normal distribution to approximate the distribution of: 
a) Untransformed proportions or rates. 
b) Canonical transformations for proportions (logistic transformations) and rates 

(logarithmic transformations). b 
c) Variance stabilizing transformations for proportions (arcsine transformations) and rates 

(square root transformations). 

The approximate methods have known shortcomings. First, they rely on the normal 
approximation to the binomial or Poisson distributions, which is not very good and introduces a 
bias when the proportion or rate is close to zero (or one), or when the study sample sizes are 
relatively small. Both situations are common in practice. A way to reduce this bias in the 
extremes (near zero or one) is to use the “canonical” transformations of proportions and rates. 
Intuitively, these non-linear transformations change the “spacing” of proportions and rates near 
the extremes. The logistic transformation for proportions “expands” values near zero or one 
(mapping them to the whole real axis) and the logarithmic transformation for rates “expands” 
values tending to zero (rates are typically small numbers).  

                                                   
a Because they have been used commonly, or for theoretical reasons – see later paragraphs.  
b These are termed “canonical” as they are the typical transformations for the binomial and Poisson families in the 
framework of Generalized Linear Models.5. McCullough P, Nelder JA. Generalized linear models. 2 ed: Chapman & 
Hall, 1989.  
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As second problem is that, for untransformed and canonically transformed proportions 
and rates, the sample variance is correlated with the sample mean. Simply put, the formula that 
gives the sample variance is a function of the sample mean. At the meta-analysis level, these 
correlations can introduce a bias in the summary estimate and in the variance of the summary 
estimate.6-8 Corrections for the bias induced by the correlation between estimates of proportions 
and their variance have been proposed,6 but are not used in practice.7 9 Alternatively, variance 
stabilizing transformations, i.e., transformations for which the variance is independent of the 
estimated mean (arcsine transformations for proportions and square root transformations for rates) 
are a standard fix for the bias induced by this correlation.  

Discrete likelihood methods, especially for random effects, are fit as generalized linear 
mixed (GLMM) models,8 i.e., as random effects logistic regressions. They cannot be 
implemented with non-iterative methods in simple spreadsheets,a and require programming in a 
general statistical package such as Stata, R, or SAS. While straightforward to implement for 
those with solid understanding of GLMMs and statistical languages, they are not easily 
accessible to meta-analysts without programming skills. Further, the routines that fit the discrete 
likelihood methods rely on an algorithm that performs numerical integrations.10 As per the 
developers’ instructions, one has to examine the robustness of the results to the algorithms’ 
default settings.b,11 12 Also, algorithms can fail to converge. Inexperienced users may be unable 
to properly assess and cope with these important details. As of this writing, no stand-alone meta-
analysis software implements GLMMs for meta-analysis of binary data, including the meta-
analysis of proportions.13 14  

So which of the above methods should one prefer? A satisfactory answer to this question 
cannot be a purely empirical one. For example, it cannot be obtained by contrasting these 
methods in a large number of real-life datasets, because there is no way to know which method is 
closer to the unobserved “truth”. The best approach is to perform a comprehensive simulation 
study. To our knowledge, none of the existing simulation studies6-8 has compared all of the 
above methods in a wide range of realistic simulation scenarios. We describe an extensive 
simulation study to assess the statistical properties of the above approaches to meta-analysis of 
proportions and incidence rates. 

                                                   
a Such as MS Excel™. 
b Specifically, one has to check the sensitivity of the quadrature or adaptive quadrature method for numerically 
integrating the likelihood during model fit. Typically, one increases the number of integration points used by the 
algorithm (which results in slower but more accurate calculations) and checks for any numerical differences in the 
results.  
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Methods 

 Overview 
Figure 1 outlines our simulation approach. Briefly, we generated 792 distinct scenarios 

for meta-analyses of proportions, and 792 scenarios for meta-analyses of incidence rates. These 
are formed by all possible combinations of choices for the details of our generative model.  

For each scenario we generated 1000 random meta-analyses, and analyzed all of them 
with the methods of interest using both fixed and random effects approaches. We quantified the 
performance of each method by calculating its bias, mean square error and coverage probability. 
Table 1 defines these performance metrics.   

In the following sections we describe the simulation parameters, the meta-analytic 
methods compared and our choices for conveying the results of the simulations.   
Figure 1. Outline of the simulation analysis 
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Table 1. Description of performance metrics for the estimated summary proportions and rates 

Metric Formula Description Comment 

Bias ∑ (𝜋𝑗 − 𝜋𝚤𝚥�)1000
𝑖=1

1000
 

 

∑ (𝜆𝑗 − 𝜆𝚤𝚥�)1000
𝑖=1

1000
 

The average difference between the 
true (simulated) proportion and its 
estimate across the 1000 simulation 
replicates in scenario j. 

Similar definition for rates. 

• Desirable to have bias near zero. 
• To compare across scenarios with different 

true proportions 𝜋𝑗, scale bias by 𝜋𝑗.  
(Similarly for rates 𝜆𝑗) 

Square root of 
the mean 
squared error 
(RMSE)  

�∑ (𝜋𝑗 − 𝜋𝚤𝚥�)21000
𝑖=1

1000
 

 

�∑ (𝜆𝑗 − 𝜆𝚤𝚥�)21000
𝑖=1

1000
 

 

The (square root of the) average 
squared difference between the true 
(simulated) proportion and its estimate 
across the 1000 simulation replicates in 
scenario j.  

Similar definition for rates 

 

• Desirable to have RMSE near zero. 
• To compare across scenarios with different true 

proportions 𝜋𝑗 , scale RMSE by 𝜋𝑗   
(Similarly for rates 𝜆𝑗) 

• RMSE can be high even if bias is 0, because 
positive and negative deviations of the estimates 
from the true mean do not cancel out. 

• Mean squared error is the sum of the variance of 
the estimates plus the square of their bias. 

Coverage 
probability 

 

 

 

The proportion of times the 95% 
confidence interval of the estimated 
summary proportion contains the true 
proportion (or rate). 

• Desirable to have coverage near 95%.  
o Coverage higher than 95% means that 𝜋�  or 

�̂� is an inefficient estimator 
o Coverage less than 95% indicates an 

inaccurate estimator 
Unlike bias and RMSE, coverage does not need 
scaling to compare across scenarios. 

Simulation scenario is denoted by 𝑗; the specific random draw under scenario 𝑗 is denoted by 𝑖. 𝜋𝑗 is the true proportion in scenario 𝑗, and its estimate by a meta-analysis 
method in draw 𝑖 is denoted by 𝜋𝚤𝚥� . Similarly for the true rate, 𝜆𝑗, and its estimate, 𝜆𝚤𝚥�, in random draw 𝑖.  



 

 13 

Description of simulations  

1. Simulation parameters 
Table 2 shows the simulation parameters for proportions. Each simulation scenario 

represents combinations of the options in the table. The first row has options for the true 
distribution of the summary proportions across studies. We explicitly avoided choosing a logit-
normal distribution for proportions or a log-normal distribution for rates, so as not to bias the 
results of the simulation study in favor of some meta-analytic methods that assume these 
distributions. Further, the examined values cover a wide range of realistic scenarios. For example, 
the true value of the proportion is varied from near the extreme of zero ( ) to . 
Because all meta-analysis methods examined for proportions are symmetric around , it 
is not necessary to span the range of values between 0.50 and 1 in the simulations. For example, 
results and conclusions for,  and  are “mirror images” around .  
Regarding heterogeneity, , we assumed that it can take three levels: zero, small, and large. 
Zero heterogeneity corresponds to fixed-effects realities, and is probably not the norm in real-life 
applications. Positive heterogeneity values are more likely to be encountered in real–life 
applications.  

Table 3 shows the respective simulation parameters for rates. In contrast to proportions, 
the vast majority of applications incidence rates take very small values. In the simulations, the 
true rate  was varied from 1 to 50 events per 1000 person-years.  
Table 2. Simulation parameters for proportions 

# Parameter Values  

1 Distribution of summary 
proportions across studies 

Beta, uniform 

2 True summary proportion, π  0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 
0.50 

3 Number of studies, K 5, 15, 30 

4 Sample sizes, N* 

 

We generated randomly vectors of sample sizes for the 
following choices: 
a. All sample sizes small (5-50 patients per study) 
b. All sample sizes medium (51-200 patients per study) 
c. All sample sizes large (201-1000 patients per study) 
d. Mixed sample sizes – approximately 50% small, 40% 

medium, and 10% large. 
5 Heterogeneity, 𝜏2  Three levels: zero, small, and large. To determine 𝜏, the 

square root of the heterogeneity, true summary proportions 
were multiplied by 0.10 or 0.50 for small or large 
heterogeneity, respectively.  

6 Correction factor, c†  0, 0.001, 0.01, 0.10, 0.5, 1, 2 

For parsimony, in the Results section we present in detail scenarios corresponding to the underlined choices. The 
index j for the scenario has been dropped. 
*The exact values for sample sizes used in the simulations are given in the Appendix. 
† Some meta-analysis methods require the use of correction factors. See Section 3.1.1 for details. The correction 
factor is an analytic choice and not a simulation parameter; however it is listed here for parsimony.  
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Table 3. Simulation parameters for rates 

# Parameter Description or values  

1 Distribution of summary rates 
across studies 

Gamma, uniform 

2 True summary rate, λ  0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 
0.50 

3 Number of studies, K 5, 15, 30 

4 Exposures, E* We generated randomly vectors of exposures for the 
following choices: 
a. All sample sizes small (50-200 person-years per study) 
b. All sample sizes medium (201-500 person-years per 

study) 
c. All sample sizes large (501-10000 person-years per 

study) 
d. Mixed sample sizes – approximately 50 % small, 40% 

medium, and 10 % large. 

5 Heterogeneity, 𝜏2  Three levels: zero, small, and large. To determine 𝜏, the 
square root of the heterogeneity, true summary rates were 
multiplied by 0.10 or 0.50 for small or large heterogeneity, 
respectively.  

6 Correction factor, c † 0, 0.001, 0.01, 0.10, 0.5, 1, 2 

For parsimony, in the Results section we present in detail scenarios corresponding the underlined choices. The index 
j for the scenario has been dropped. 
*The vectors of the exact values for sample sizes used in the simulations are given in the Appendix.  
† Some meta-analysis methods require the use of correction factors. See text for details. See Section 3.1.1 for details. 
The correction factor is an analytic choice and not a simulation parameter; however it is listed here for parsimony. 
 

2. Generation of Random Data 
For each scenario we generated 1000 random meta-analyses of proportions or rates. The 

following pseudo-algorithm describes the process for scenario j (all subscripts for the scenario 
have been dropped for notational simplicity). The pseudo-algorithm refers to parameters in Table 
2 or Table 3, as applicable.  

We verified the fidelity of the simulations by comparing the mean and variance of the 
empirical distributions of the true values of the simulated proportions or rates for all scenarios 
versus the respective simulation parameters. 
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Table 4. Pseudo-algorithm for generating random data 

Step Description Simulation 
table row # 

Comment 

 For a given simulation scenario :*   

1 Choose the form of the distribution for true 
proportion (or true rate) in each study in the 
simulated meta-analyses  

1  

2 Choose the average true proportion  (or 
average true rate )  

2  

3 Choose the number of studies, K 3  

4 Choose the sample sizes for the K studies to be 
a vector of sample sizes  for 

proportions [or exposures  for 
rates]  

4 N and E were drawn 
randomly, and were 
kept fixed for all 
simulations. 

5 Choose   5  

6 Using the distribution specified in steps 1, 2 
and 5, generate 1000 random vectors of true 
probabilities (or true rates) for the K studies: 

 for proportions, or 

 for rates, where  indexes a 
random vector, . 

1, 2, 5 If 𝜏2 = 0 in Step 5, 
all  for 
proportions, the 
value chosen in 
Step 2. Similarly, 
all  for rates. 

7 Generate 1000 vectors of random data, 
corresponding to the numbers of events in each 
study:  
• For proportions the random vector of 

events, , is drawn from 

binomial distributions with probabilities  
and sample sizes . 

• For rates, the random vector of counts, 
, is drawn from Poisson 

distributions with true rates  and 
exposures . 

 Formulas for 
calculating the 
parameters of beta 
and uniform 
distributions for 
proportions (or 
gamma and uniform 
distributions for 
rates) with a given 
mean and standard 
deviation are given 
in the Appendix.  

*For ease of read, the index  for the simulation scenario has been dropped from the notation in the table. The 

symbol  indexes a random meta-analysis, and  indexes a study in a meta-analysis.  
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3. Meta-analysis Methods 
The underlying outcomes are either binary events (for which the proportion is the mean 

event rate) or counts of events (for which the incidence rate is the mean event rate per unit of 
exposure). Assuming these events are independent with non-varying rates, the binary outcomes 
follow binomial distributions and the count outcomes follow Poisson distributions. Methods that 
use these distributions are called “discrete likelihood” methods. When sample sizes are large 
enough,a however, the logistic (logit for short) transformation of proportions and the logarithmic 
transformation of rates approximate normal distributions, and methods for normal distributions 
may be used. The latter are called “approximate” methods.  

We performed both fixed and random effects meta-analyses for both approximate and 
discrete likelihood methods. For approximate methods, fixed effects meta-analysis used inverse 
variance weights,15 and random effects meta-analysis used the moment-based (non-iterative) 
estimator for between study variance as per DerSimonian and Laird.16  

For discrete likelihood methods, the meta-analysis was performed in the generalized 
linear models framework for the fixed effects, and the GLMM framework for random effects. 
For GLMMs we used 12 integration points after examining the robustness of results obtained 
with 1, 4, 8, 12, 16, and 20 integration points in 2 example meta-analyses (one with 5 and one 
with 30 studies of medium sample size, a true proportion or rate of 0.20 and large heterogeneity).  

3.1.Approximate methods  
Table 5 shows formulas for the three approximate methods used in the simulation: 

untransformed rates and proportions, canonical transformations (logistic and log) and variance 
stabilizing (arcsine and square root). From the formulas in the table, zero events ( , 0j ikx = ) in, 
study  of simulation  in scenario j  will result in an estimated variance of zero for 
untransformed proportions and rates, and an undefined estimate and variance for proportions and 
rates with the canonical transformation. In such pathological cases, inverse variance weights are 
undefined and continuity correction factors are typically used to make calculations possible, as 
explained below. Note that because of symmetry, the correction is also needed when , ,j ik j kx n=  
as well (but only for proportions).  

We opted to examine the behavior of approximate methods using the continuity 
correction factors, because this is a strategy that many meta-analyses have followed.  

 

 

                                                   
a More accurately, when the expected numbers in all cells (for proportions) or the expected number of counts (for 
rates) is relatively large, e.g., >5.  
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Table 5. Formulas for the approximate methods for meta-analysis of proportions and rates in a study 

 Proportions Proportions Rates Rates 
 Estimated Mean Estimated 

Variance 
Estimated 

Mean 
Estimated 
Variance 

Untransformed 
proportions or 
rates 

,
,

,

j ik
j ik

j k

p
x
n

=  

[cc optional] 

, ,

,

(1 )j ik j ik

j k

p p
n
−

 

[cc needed] 

,
,

,

j ik
j ik

j k

y
l

e
=

 

[cc needed]
 

,j ikl  
[cc needed] 

Canonical 
transformations* 

,

,

log
1

j ik

j ik

p
p−

 

[cc needed] 

, , ,

1 1

j ik j k j ikx n x
+

−
 

[cc needed] 

,log( )j ikl  

[cc needed] 
,

1

j iky
 

[cc needed] 

Variance 
stabilizing 

transformations† 

,arcsin( )j ikp  

[no cc] 
,

1
4 j kn

 

[no cc] 

,j ikl   

[no cc] 
,

1
4 j ke

 

[no cc] 

cc: continuity correction. 

In the Table j  indexes the scenario. and  are estimates of the true proportions and rates, 

respectively, in study  of simulation . The notation is the same as in Table 4 and in the text. 

*Canonical transformations: the logistic transformation for proportions and the logarithmic transformation for rates.  
†Variance stabilizing transformations: the arcsine transformation for proportions and square root transformation for 
rates. 

 

3.1.1 Continuity Correction Factors 

When , 0j ikx = or , ,j ik j kx n= , the respective proportion was estimated as ,
,

, 2
j ik

j ik
j k

cx
p

n c
=

+

+
 , 

where  is the continuity correction factor, or correction factor for short. This adjusted estimate 
,j ikp  was used in the formulas of Table 5 instead of the unadjusted estimate ,j ikp  when a 

continuity correction was needed. Continuity corrections were performed only for pathological 
studies in a meta-analysis. Since the correction factor is only needed for correcting the variance 
estimate with untransformed proportions, we performed two sets of analyses in the 
untransformed case. The first used ,j ikp  for estimating mean and variance; the second used ,j ikp  
to estimate the mean, but ,j ikp  to estimate the variance. For parsimony and clarity, we present 
results with the first set of analyses (which is what many meta-analysts have done), and briefly 
discuss how the second set of analyses differs from the first.  
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The same discussion applies to rates. In simulated studies with , 0j iky =  we estimated the 

respective rate as ,
,

, ,2 2
j ik

j ik
j k j k

y
l

ce c
c c

e
= =

+ +

+ . Continuity corrections were applied only for 

pathological studies in a meta-analysis. As for proportions, we run two sets of analyses for 
methods using untransformed rates: the first used ,j ikl  for estimating mean and variance; the 

second used ,j ikl  to estimate the mean, but ,j ikl  to estimate the variance. 

3.2.Discrete likelihood methods  
 We fit discrete likelihood methods by maximizing the likelihood in the generalized linear 
(mixed) models framework using canonical link functions. We used the R command (package) 
lmer with a binomial link function; all analyses were checked for correctness by independently 
coding them in Stata using the xtmelogit command. These methods do not need continuity 
corrections. For rates, the link function in the aforementioned R commands is a Poisson, and the 
respective Stata command is xtmepoisson. When all (or almost all) simulated studies in a meta-
analysis have 0 numerator, the random effects methods may not converge. This can happen when 
the true proportions or rates are small, the sample sizes or exposure sizes are small, or the 
number of studies in a meta-analysis is small. For each simulation, we recorded whether the 
random effects method has converged or not. For completeness, we examined a hybrid strategy 
of attempting to fit a random effects model, and switching to a fixed effects model if the random 
effects model fails to converge.  

The fixed effects model for both proportions and rates is mathematically equivalent to 
simple pooling, i.e., the summary proportion or the summary rate can be calculated by dividing 
the sum of the numerators by the sum of the denominators.  

4. Presentation of Simulation Results 

4.1.1 Categorizing Simulation Scenarios by Expected Counts per Study 
The normal approximation to the binomial is adequate, conservatively, when the 

expected numbers of events (and no events) is at least 5, i.e., , , 5j k j ikn π > (and , ,(1 ) 5j k j ikn π− > ). 
More liberally, one might use a cutoff of 1 event. Hence, for presentation purposes it is sensible 
to organize the simulated scenarios into 3 categories defined by expected counts of events, 
namely: those with ≤1; >1 and < 5; and ≥5 expected events per study.  For any given scenario, 
the expected count of events per study is: 

 1( )jKj
j k jk

j

count = n
K

expected
π

=Σ  

A similar categorization was used for organizing the simulations on rates, by grouping 
the scenarios according to the expected number of events in categories with ≤1; between 1 and 
≤ 5; and at least 5. The expected number of events is given by a similar formula: 

 1( )jKj
j k jk

j

count =
K

expected e
λ

=Σ  
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Results 
The first part of the Results section is on proportions, and the second part is on rates. For 

parsimony, and after careful examination of all scenarios, we decided to describe in detail 
findings on a representative subset of the performed analyses.a We start with comparisons and 
recommendations across all methods, and proceed to provide more details on pairwise 
comparisons between approximate methods and between approximate and discrete likelihood 
methods.  Finally, results on rates were very similar to those from proportions. Thus, we report in 
detail results in proportions, and provide a succinct summary of the results on rates. We conclude 
with practical recommendations for applied meta-analysis.  

1. Section 5: Results for meta-analysis of proportions: 
a. Section 5.1: Overview of results from comparisons across all methods.   
b. Simulation results for random effects meta-analysis: 

i. Section 5.2: Comparisons between the three approximate methods 
(untransformed, canonical and variance stabilizing transformation) 

ii. Section 5.3: Comparisons between approximate versus discrete likelihood 
methods  

c. Section 5.4: Simulation results on the comparison of fixed versus random effects 
meta-analysis for the discrete likelihood methods  

2. Section 6: Results for meta-analysis of rates. 
a. Section 6.1: Overview of results from comparisons across all methods.   

3. Section 7: Practical recommendations for meta-analysis. 
 

Observations from simulations are listed as bullet points. An explanation is provided in a grey 
box after each observation: 

• [An observation on the scaled bias, scaled RMSE or coverage probability of a meta-
analysis method/strategy.]  

[An explanation for the observation] 

5. Results for Proportions 

5.1.Overview of results across all methods  
Table 6 shows the scaled bias with the random effects analysis methods for selected 

scenarios with high heterogeneity. Table 7 and Table 8 show the corresponding scaled RMSE 
and coverage. We make the following general observations for scenarios with expected counts 1 
or less, between 1 and 5, and 5 or more: 

• For expected counts ≤1, the hybrid method has scaled bias and RMSE that are closer to 
zero and coverage probability closer to 95% compared to other methods.  

                                                   
a We report simulation scenarios corresponding to the combinations of the underlined values in Table 2 for 
proportions, and Table 3 for rates. 



 

 20 

• For expected counts between 1 and 5 the random effects discrete likelihood method and 
the approximate method with the variance stabilizing transformation have comparable 
performance, and better than other methods.  

[For detailed descriptions and explanations refer to Sections 5.2 and 5.3]  

• For expected counts of 5 or more, the differences between methods become less evident.  

For numerical reasons, the random effects discrete likelihood method does not always converge. 
The following general comments can be made:  

• For very small expected counts (<0.5) and K≤15 the random effects discrete likelihood 
method reached convergence for fewer than 90% of the simulations (see column 
“Discrete (fraction converged)”). For expected counts above 1 and K=30, the method 
converges practically for all simulations (when the fraction converged equals 1.0, random 
effects methods converged in all simulations). 

• For expected counts above 1 the random effect discrete likelihood method converged 
(almost) always, and thus the performance of the hybrid strategy is identical to that with 
random effects (discrete likelihood). 

The random effects discrete likelihood method will not converge when all (or almost all) studies 
in a meta-analysis have 0 events. This is more common in simulation scenarios with very low 
expected counts, and when the number of studies is small. 

We can make the following general comments on the preferred methods (hybrid strategy-discrete 
likelihood and variance-stabilizing transformation-approximate likelihood): 

• For expected counts above 30, the approximate method using the variance stabilizing 
transformation has smaller absolute scaled bias and scaled RMSE than the discrete 
likelihood methods. For smaller counts, the methods using the discrete likelihood have 
smaller absolute scaled bias and scaled RMSE than the approximate method using the 
variance stabilizing transformation.  

[For detailed descriptions and explanations refer to Section 5.3]  

• For very large expected counts (for example when the true proportion is 0.4) all 
compared methods converge in scaled bias and scaled RMSE.  

This is congruent with what we expect theoretically: the normal approximation to the binomial 
improves with increasing expected counts.   

• The hybrid strategy using the discrete likelihood has better coverage probabilities than 
the other methods for the widest range of scenarios.  
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Table 6. Comparison of scaled bias across random effects methods (selected scenarios with high heterogeneity) 

Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.380 14.529 -0.757 0.160 4.886 -0.058 
M1 5 0.001 medium 0.1 2.979 3.778 -0.645 0.497 0.998 -0.007 
S2 5 0.005 small 0.2 1.955 2.669 -0.659 0.583 0.550 -0.096 
X1 5 0.001 mixed 0.2 0.446 6.042 -0.257 0.648 0.497 -0.030 
S3 5 0.01 small 0.3 0.650 1.247 -0.563 0.797 0.099 -0.124 
L1 5 0.001 large 0.6 0.094 0.687 -0.445 0.954 -0.046 -0.090 
M2 5 0.005 medium 0.6 0.078 0.674 -0.448 0.946 -0.056 -0.107 
X2 5 0.005 mixed 1.1 0.022 0.801 -0.280 0.980 -0.002 -0.022 
M3 5 0.01 medium 1.3 -0.207 0.330 -0.300 0.997 -0.087 -0.089 
S4 5 0.05 small 1.7 -0.240 0.198 -0.261 1.000 -0.101 -0.101 
X3 5 0.01 mixed 2.2 -0.034 0.363 -0.263 0.998 -0.005 -0.007 
L2 5 0.005 large 3.2 -0.221 0.091 -0.167 1.000 -0.093 -0.093 
S5 5 0.1 small 3.4 -0.152 0.082 -0.119 1.000 -0.068 -0.068 
L3 5 0.01 large 6.4 -0.134 0.014 -0.100 1.000 -0.089 -0.089 
M4 5 0.05 medium 6.4 -0.117 0.012 -0.090 0.999 -0.082 -0.082 
X4 5 0.05 mixed 10.9 -0.093 0.085 -0.139 1.000 -0.040 -0.040 
M5 5 0.1 medium 12.8 -0.038 -0.021 -0.043 1.000 -0.066 -0.066 
S6 5 0.4 small 13.7 -0.014 -0.020 -0.028 1.000 -0.044 -0.044 
X5 5 0.1 mixed 21.9 -0.111 -0.007 -0.124 1.000 -0.088 -0.088 
L4 5 0.05 large 31.8 -0.047 -0.087 -0.072 0.999 -0.110 -0.110 
M6 5 0.4 medium 51.4 -0.002 -0.031 -0.018 1.000 -0.040 -0.040 
L5 5 0.1 large 63.7 -0.013 -0.081 -0.049 1.000 -0.092 -0.092 
X6 5 0.4 mixed 87.5 -0.014 -0.023 -0.029 1.000 -0.041 -0.041 
L6 5 0.4 large 254.6 0.003 -0.038 -0.016 1.000 -0.040 -0.040 
S1 15 0.001 small <0.1 14.558 19.528 -0.887 0.335 0.477 -0.505 
M1 15 0.001 medium 0.1 3.183 4.300 -0.826 0.815 -0.176 -0.328 
X1 15 0.001 mixed 0.1 0.940 6.034 -0.661 0.864 -0.094 -0.217 
S2 15 0.005 small 0.1 2.334 3.685 -0.805 0.847 -0.164 -0.292 
S3 15 0.01 small 0.3 0.841 1.761 -0.695 0.977 -0.168 -0.187 
M2 15 0.005 medium 0.6 0.096 0.815 -0.559 1.000 -0.140 -0.140 
L1 15 0.001 large 0.6 0.010 0.794 -0.525 0.999 -0.125 -0.125 
X2 15 0.005 mixed 0.7 -0.084 0.971 -0.465 1.000 -0.108 -0.108 
M3 15 0.01 medium 1.1 -0.259 0.431 -0.389 1.000 -0.113 -0.113 
X3 15 0.01 mixed 1.3 -0.226 0.445 -0.380 1.000 -0.101 -0.101 
S4 15 0.05 small 1.4 -0.304 0.340 -0.350 1.000 -0.122 -0.122 
S5 15 0.1 small 2.7 -0.237 0.153 -0.184 1.000 -0.087 -0.087 
L2 15 0.005 large 3.1 -0.274 0.155 -0.191 0.999 -0.097 -0.097 
M4 15 0.05 medium 5.7 -0.168 0.032 -0.118 1.000 -0.102 -0.102 
L3 15 0.01 large 6.3 -0.169 0.029 -0.121 1.000 -0.104 -0.104 
X4 15 0.05 mixed 6.7 -0.157 0.068 -0.150 1.000 -0.084 -0.084 
S6 15 0.4 small 10.8 -0.007 -0.006 -0.029 1.000 -0.042 -0.042 
M5 15 0.1 medium 11.5 -0.073 -0.026 -0.074 1.000 -0.096 -0.096 
X5 15 0.1 mixed 13.4 -0.107 0.002 -0.098 1.000 -0.090 -0.090 
L4 15 0.05 large 31.4 -0.038 -0.074 -0.063 1.000 -0.105 -0.105 
M6 15 0.4 medium 45.9 -0.009 -0.044 -0.030 1.000 -0.057 -0.057 
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Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 53.5 -0.005 -0.027 -0.025 1.000 -0.047 -0.047 
L5 15 0.1 large 62.8 -0.014 -0.085 -0.053 1.000 -0.101 -0.101 
L6 15 0.4 large 251.4 0.003 -0.043 -0.018 1.000 -0.046 -0.046 
S1 30 0.001 small <0.1 14.019 19.604 -0.937 0.546 -0.677 -0.823 
M1 30 0.001 medium 0.1 3.359 4.686 -0.849 0.956 -0.346 -0.375 
X1 30 0.001 mixed 0.1 1.113 6.608 -0.737 0.974 -0.225 -0.245 
S2 30 0.005 small 0.1 2.248 3.744 -0.819 0.978 -0.311 -0.326 
S3 30 0.01 small 0.3 0.786 1.790 -0.710 1.000 -0.190 -0.190 
M2 30 0.005 medium 0.5 0.129 0.902 -0.586 1.000 -0.135 -0.135 
L1 30 0.001 large 0.5 0.081 0.922 -0.576 1.000 -0.126 -0.126 
X2 30 0.005 mixed 0.6 -0.140 1.093 -0.474 1.000 -0.110 -0.110 
M3 30 0.01 medium 1.1 -0.242 0.505 -0.404 1.000 -0.093 -0.093 
X3 30 0.01 mixed 1.3 -0.287 0.539 -0.358 1.000 -0.096 -0.096 
S4 30 0.05 small 1.4 -0.318 0.393 -0.334 1.000 -0.096 -0.096 
S5 30 0.1 small 2.7 -0.243 0.167 -0.194 0.999 -0.096 -0.095 
L2 30 0.005 large 2.7 -0.311 0.206 -0.220 1.000 -0.102 -0.102 
M4 30 0.05 medium 5.4 -0.182 0.043 -0.128 1.000 -0.109 -0.109 
L3 30 0.01 large 5.5 -0.190 0.056 -0.131 1.000 -0.103 -0.103 
X4 30 0.05 mixed 6.4 -0.140 0.067 -0.157 1.000 -0.101 -0.101 
M5 30 0.1 medium 10.8 -0.080 -0.024 -0.078 1.000 -0.100 -0.100 
S6 30 0.4 small 10.9 -0.005 -0.005 -0.029 1.000 -0.043 -0.043 
X5 30 0.1 mixed 12.7 -0.091 -0.006 -0.108 1.000 -0.102 -0.102 
L4 30 0.05 large 27.4 -0.043 -0.072 -0.066 1.000 -0.108 -0.108 
M6 30 0.4 medium 43 -0.001 -0.037 -0.023 1.000 -0.050 -0.050 
X6 30 0.4 mixed 50.8 -0.002 -0.026 -0.024 1.000 -0.045 -0.045 
L5 30 0.1 large 54.9 -0.019 -0.087 -0.057 1.000 -0.106 -0.106 
L6 30 0.4 large 219.4 -0.005 -0.055 -0.028 1.000 -0.059 -0.059 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  

The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods 
converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 
simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a 
scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 
1.000, because the random effects method was used in all simulations.  
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Table 7. Comparison of scaled RMSE across random effects methods (selected scenarios with high 
heterogeneity) 

Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.407 14.631 1.025 0.160 5.211 2.277 
M1 5 0.001 medium 0.1 3.018 3.924 0.905 0.497 1.483 1.263 
S2 5 0.005 small 0.2 2.002 2.804 0.838 0.583 1.004 1.002 
X1 5 0.001 mixed 0.2 1.095 6.098 0.838 0.648 1.022 1.014 
S3 5 0.01 small 0.3 0.733 1.442 0.760 0.797 0.685 0.759 
L1 5 0.001 large 0.6 0.317 0.919 0.658 0.954 0.576 0.602 
M2 5 0.005 medium 0.6 0.289 0.912 0.660 0.946 0.567 0.598 
X2 5 0.005 mixed 1.1 0.595 0.965 0.545 0.980 0.576 0.587 
M3 5 0.01 medium 1.3 0.366 0.569 0.528 0.997 0.458 0.461 
S4 5 0.05 small 1.7 0.391 0.437 0.473 1.000 0.404 0.404 
X3 5 0.01 mixed 2.2 0.466 0.609 0.513 0.998 0.491 0.493 
L2 5 0.005 large 3.2 0.391 0.352 0.391 1.000 0.357 0.357 
S5 5 0.1 small 3.4 0.354 0.316 0.352 1.000 0.323 0.323 
L3 5 0.01 large 6.4 0.320 0.285 0.308 1.000 0.299 0.299 
M4 5 0.05 medium 6.4 0.312 0.277 0.304 0.999 0.296 0.296 
X4 5 0.05 mixed 10.9 0.340 0.366 0.373 1.000 0.364 0.364 
M5 5 0.1 medium 12.8 0.266 0.252 0.260 1.000 0.264 0.264 
S6 5 0.4 small 13.7 0.255 0.259 0.267 1.000 0.283 0.283 
X5 5 0.1 mixed 21.9 0.296 0.283 0.307 1.000 0.304 0.304 
L4 5 0.05 large 31.8 0.240 0.241 0.239 0.999 0.253 0.253 
M6 5 0.4 medium 51.4 0.242 0.266 0.254 1.000 0.275 0.275 
L5 5 0.1 large 63.7 0.243 0.242 0.239 1.000 0.248 0.248 
X6 5 0.4 mixed 87.5 0.257 0.267 0.270 1.000 0.284 0.284 
L6 5 0.4 large 254.6 0.222 0.253 0.235 1.000 0.256 0.256 
S1 15 0.001 small <0.1 14.568 19.564 0.926 0.335 1.882 1.361 
M1 15 0.001 medium 0.1 3.193 4.348 0.854 0.815 0.812 0.850 
X1 15 0.001 mixed 0.1 1.233 6.072 0.759 0.864 0.721 0.765 
S2 15 0.005 small 0.1 2.347 3.738 0.838 0.847 0.733 0.780 
S3 15 0.01 small 0.3 0.866 1.834 0.744 0.977 0.564 0.578 
M2 15 0.005 medium 0.6 0.179 0.910 0.617 1.000 0.405 0.405 
L1 15 0.001 large 0.6 0.161 0.892 0.592 0.999 0.397 0.398 
X2 15 0.005 mixed 0.7 0.362 1.042 0.543 1.000 0.410 0.410 
M3 15 0.01 medium 1.1 0.294 0.532 0.463 1.000 0.299 0.299 
X3 15 0.01 mixed 1.3 0.354 0.542 0.456 1.000 0.313 0.313 
S4 15 0.05 small 1.4 0.347 0.434 0.430 1.000 0.291 0.291 
S5 15 0.1 small 2.7 0.310 0.247 0.283 1.000 0.226 0.226 
L2 15 0.005 large 3.1 0.331 0.250 0.279 0.999 0.222 0.222 
M4 15 0.05 medium 5.7 0.240 0.167 0.207 1.000 0.195 0.195 
L3 15 0.01 large 6.3 0.238 0.166 0.208 1.000 0.193 0.193 
X4 15 0.05 mixed 6.7 0.239 0.203 0.243 1.000 0.209 0.209 
S6 15 0.4 small 10.8 0.148 0.147 0.160 1.000 0.169 0.169 
M5 15 0.1 medium 11.5 0.164 0.140 0.160 1.000 0.170 0.170 
X5 15 0.1 mixed 13.4 0.196 0.164 0.192 1.000 0.186 0.186 
L4 15 0.05 large 31.4 0.149 0.154 0.153 1.000 0.173 0.173 
M6 15 0.4 medium 45.9 0.135 0.157 0.148 1.000 0.167 0.167 
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Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 53.5 0.142 0.156 0.153 1.000 0.168 0.168 
L5 15 0.1 large 62.8 0.136 0.156 0.142 1.000 0.166 0.166 
L6 15 0.4 large 251.4 0.128 0.154 0.138 1.000 0.156 0.156 
S1 30 0.001 small <0.1 14.024 19.618 0.944 0.546 1.072 1.040 
M1 30 0.001 medium 0.1 3.365 4.713 0.862 0.956 0.732 0.746 
X1 30 0.001 mixed 0.1 1.225 6.628 0.775 0.974 0.623 0.635 
S2 30 0.005 small 0.1 2.255 3.771 0.835 0.978 0.661 0.670 
S3 30 0.01 small 0.3 0.798 1.825 0.734 1.000 0.459 0.459 
M2 30 0.005 medium 0.5 0.173 0.957 0.615 1.000 0.325 0.325 
L1 30 0.001 large 0.5 0.144 0.973 0.605 1.000 0.317 0.317 
X2 30 0.005 mixed 0.6 0.271 1.126 0.513 1.000 0.295 0.295 
M3 30 0.01 medium 1.1 0.261 0.561 0.440 1.000 0.223 0.223 
X3 30 0.01 mixed 1.3 0.337 0.584 0.406 1.000 0.234 0.234 
S4 30 0.05 small 1.4 0.340 0.441 0.379 1.000 0.214 0.214 
S5 30 0.1 small 2.7 0.281 0.214 0.243 0.999 0.170 0.170 
L2 30 0.005 large 2.7 0.339 0.254 0.266 1.000 0.179 0.179 
M4 30 0.05 medium 5.4 0.217 0.120 0.174 1.000 0.157 0.157 
L3 30 0.01 large 5.5 0.223 0.129 0.179 1.000 0.157 0.157 
X4 30 0.05 mixed 6.4 0.192 0.149 0.205 1.000 0.166 0.166 
M5 30 0.1 medium 10.8 0.136 0.107 0.133 1.000 0.147 0.147 
S6 30 0.4 small 10.9 0.109 0.110 0.121 1.000 0.129 0.129 
X5 30 0.1 mixed 12.7 0.144 0.111 0.156 1.000 0.151 0.151 
L4 30 0.05 large 27.4 0.107 0.117 0.114 1.000 0.142 0.142 
M6 30 0.4 medium 43 0.092 0.109 0.101 1.000 0.118 0.118 
X6 30 0.4 mixed 50.8 0.099 0.110 0.110 1.000 0.123 0.123 
L5 30 0.1 large 54.9 0.095 0.125 0.107 1.000 0.140 0.140 
L6 30 0.4 large 219.4 0.092 0.121 0.103 1.000 0.124 0.124 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  

The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods 
converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 
simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a 
scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 
1.000, because the random effects method was used in all simulations.  
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Table 8. Comparison of coverage across random effects methods (selected scenarios with high heterogeneity) 

Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 1.000 0.000 1.000 0.160 0.931 0.989 
M1 5 0.001 medium 0.1 1.000 0.000 0.997 0.497 0.938 0.969 
S2 5 0.005 small 0.2 1.000 0.417 1.000 0.583 0.938 0.964 
X1 5 0.001 mixed 0.2 0.992 0.000 0.645 0.648 0.966 0.978 
S3 5 0.01 small 0.3 0.999 0.766 0.796 0.797 0.976 0.981 
L1 5 0.001 large 0.6 1.000 0.833 0.815 0.954 0.960 0.962 
M2 5 0.005 medium 0.6 1.000 0.844 0.806 0.946 0.963 0.965 
X2 5 0.005 mixed 1.1 0.814 0.798 0.826 0.980 0.941 0.922 
M3 5 0.01 medium 1.3 0.926 0.896 0.842 0.997 0.972 0.969 
S4 5 0.05 small 1.7 0.755 0.923 0.879 1.000 0.958 0.958 
X3 5 0.01 mixed 2.2 0.763 0.824 0.797 0.998 0.841 0.839 
L2 5 0.005 large 3.2 0.701 0.923 0.891 1.000 0.928 0.928 
S5 5 0.1 small 3.4 0.769 0.938 0.906 1.000 0.918 0.918 
L3 5 0.01 large 6.4 0.776 0.911 0.880 1.000 0.889 0.889 
M4 5 0.05 medium 6.4 0.768 0.908 0.870 0.999 0.882 0.881 
X4 5 0.05 mixed 10.9 0.717 0.740 0.828 1.000 0.702 0.702 
M5 5 0.1 medium 12.8 0.830 0.878 0.866 1.000 0.849 0.849 
S6 5 0.4 small 13.7 0.861 0.880 0.875 1.000 0.859 0.859 
X5 5 0.1 mixed 21.9 0.723 0.819 0.815 1.000 0.750 0.750 
L4 5 0.05 large 31.8 0.825 0.866 0.861 0.999 0.842 0.842 
M6 5 0.4 medium 51.4 0.835 0.832 0.841 1.000 0.815 0.815 
L5 5 0.1 large 63.7 0.840 0.847 0.861 1.000 0.829 0.829 
X6 5 0.4 mixed 87.5 0.827 0.854 0.835 1.000 0.828 0.828 
L6 5 0.4 large 254.6 0.877 0.852 0.872 1.000 0.853 0.853 
S1 15 0.001 small <0.1 0.000 0.000 1.000 0.335 0.872 0.957 
M1 15 0.001 medium 0.1 0.215 0.000 0.500 0.815 0.979 0.983 
X1 15 0.001 mixed 0.1 0.964 0.000 0.653 0.864 0.956 0.962 
S2 15 0.005 small 0.1 0.806 0.000 0.570 0.847 0.967 0.972 
S3 15 0.01 small 0.3 0.996 0.023 0.479 0.977 0.988 0.965 
M2 15 0.005 medium 0.6 0.999 0.463 0.551 1.000 0.975 0.975 
L1 15 0.001 large 0.6 1.000 0.468 0.572 0.999 0.957 0.956 
X2 15 0.005 mixed 0.7 0.788 0.295 0.636 1.000 0.953 0.953 
M3 15 0.01 medium 1.1 0.781 0.653 0.690 1.000 0.974 0.974 
X3 15 0.01 mixed 1.3 0.668 0.623 0.703 1.000 0.919 0.919 
S4 15 0.05 small 1.4 0.527 0.711 0.739 1.000 0.946 0.946 
S5 15 0.1 small 2.7 0.571 0.847 0.841 1.000 0.921 0.921 
L2 15 0.005 large 3.1 0.506 0.839 0.828 0.999 0.928 0.928 
M4 15 0.05 medium 5.7 0.684 0.925 0.878 1.000 0.885 0.885 
L3 15 0.01 large 6.3 0.671 0.914 0.863 1.000 0.889 0.889 
X4 15 0.05 mixed 6.7 0.695 0.862 0.841 1.000 0.900 0.900 
S6 15 0.4 small 10.8 0.932 0.922 0.923 1.000 0.918 0.918 
M5 15 0.1 medium 11.5 0.846 0.928 0.898 1.000 0.883 0.883 
X5 15 0.1 mixed 13.4 0.774 0.909 0.860 1.000 0.873 0.873 
L4 15 0.05 large 31.4 0.860 0.868 0.874 1.000 0.844 0.844 
M6 15 0.4 medium 45.9 0.934 0.885 0.912 1.000 0.904 0.904 
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Sce-
nario 

K Propo-
rtion 

Sample 
size 

Exp  
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 53.5 0.920 0.896 0.909 1.000 0.905 0.905 
L5 15 0.1 large 62.8 0.890 0.857 0.897 1.000 0.860 0.860 
L6 15 0.4 large 251.4 0.939 0.880 0.931 1.000 0.920 0.920 
S1 30 0.001 small <0.1 0.000 0.000 1.000 0.546 0.963 0.980 
M1 30 0.001 medium 0.1 0.000 0.000 0.274 0.956 0.976 0.977 
X1 30 0.001 mixed 0.1 0.826 0.000 0.405 0.974 0.972 0.947 
S2 30 0.005 small 0.1 0.000 0.000 0.224 0.978 0.983 0.961 
S3 30 0.01 small 0.3 0.857 0.000 0.197 1.000 0.977 0.977 
M2 30 0.005 medium 0.5 1.000 0.112 0.284 1.000 0.974 0.974 
L1 30 0.001 large 0.5 0.999 0.074 0.295 1.000 0.978 0.978 
X2 30 0.005 mixed 0.6 0.814 0.009 0.420 1.000 0.963 0.963 
M3 30 0.01 medium 1.1 0.666 0.326 0.501 1.000 0.965 0.965 
X3 30 0.01 mixed 1.3 0.447 0.244 0.545 1.000 0.939 0.939 
S4 30 0.05 small 1.4 0.266 0.412 0.580 1.000 0.936 0.936 
S5 30 0.1 small 2.7 0.425 0.755 0.765 0.999 0.919 0.919 
L2 30 0.005 large 2.7 0.245 0.667 0.707 1.000 0.916 0.916 
M4 30 0.05 medium 5.4 0.553 0.925 0.831 1.000 0.862 0.862 
L3 30 0.01 large 5.5 0.505 0.920 0.810 1.000 0.879 0.879 
X4 30 0.05 mixed 6.4 0.666 0.871 0.752 1.000 0.861 0.861 
M5 30 0.1 medium 10.8 0.800 0.930 0.852 1.000 0.823 0.823 
S6 30 0.4 small 10.9 0.934 0.920 0.921 1.000 0.914 0.914 
X5 30 0.1 mixed 12.7 0.789 0.936 0.847 1.000 0.869 0.869 
L4 30 0.05 large 27.4 0.877 0.876 0.892 1.000 0.800 0.800 
M6 30 0.4 medium 43 0.960 0.902 0.930 1.000 0.916 0.916 
X6 30 0.4 mixed 50.8 0.956 0.912 0.930 1.000 0.930 0.930 
L5 30 0.1 large 54.9 0.911 0.825 0.901 1.000 0.813 0.813 
L6 30 0.4 large 219.4 0.953 0.850 0.927 1.000 0.906 0.906 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4). The column “Discrete (fraction converged)” shows 
the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that 
random effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 
means that they converged in 335 out of 1000 simulations in a scenario. The columns “Discrete (random)” and 
“Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used 
in all simulations.  

 

5.2. Pairwise comparisons among approximate methods – random effects meta-analysis  
For random effects meta-analysis, results based on the variance stabilizing (arcsine) 

transformation have scaled bias and scaled RMSE closer to zero, and coverage probabilities 
closer to 95 percent, compared to those based on the canonical (logistic) transformation or on 
untransformed data across a wide range of scenarios, as explained below.  

Therefore, if one has to use approximate methods for random effects meta-analysis of 
proportions, we would recommend the variance stabilizing transformation.  
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5.2.1 No transformation versus canonical transformation (logistic transformation) 
Figure 2 compares the scaled bias for random effects meta-analysis on untransformed 

versus logit-transformed data. Its 9 panels are arranged in 3 columns, according to whether the 
mean expected number of events in the simulated studies is ≤1, between 1 and 5, or ≥ 5; and 3 
rows, corresponding to the number of studies, K, in the simulated meta-analysis (5, 15, or 30). 

In Figure 2, points represent simulation scenarios, and are coded with a letter-number 
pair, based on sample size and true proportion. Each letter-number pair appears exactly once in 
each row of plots, as mapped in Table 9.  
Table 9. Mapping of simulation scenarios in the figures of the results section. 

Studies (K) Expected count ≤ 1 1 < Expected count < 5 Expected count ≥ 5 

5 S1, S2, S3, M1, M2, L1, X1 S4, S5, M3, L2, X2, X3 M4, M5, L3, L4, L5, X4, X5 

15 S1, S2, S3, M1, M2, L1, X1, X2 S4, S5, M3, L2, X3 M4, M5, L3, L4, L5, X4, X5 

30 S1, S2, S3, M1, M2, L1, X1, X2  S4, S5, M3, L2, X3 M4, M5, L3, L4, L5, X4, X5 

Simulation scenarios are coded with two characters, a letter (indicating sample size scenarios; S=small, M=medium, 
L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). With 
a single exception, the various simulation scenarios map to the same range of expected count across all three choices 
of K (i.e., they map to the same row). The single exception pertains to X2 (i.e., scenarios with mixed sample sizes, 
and a true proportion equal to 0.002; underlined). For K=5, the expected count for X2 is 1.09; and for K=15 and 
K=30 the expected count is 0.67 and 0.64, respectively. This chance variation occurs because the sample sizes were 
chosen randomly for each K, and consequently the expected counts for all scenarios are different for 5 studies than 
for 15 or 30 studies. It so happens that for X2, this variation results in “changing columns”. 

 

Figure 3 has a similar layout and, denotes the scaled RMSE, which behaves 
approximately the same as the absolute value of scaled bias (see Methods). Based on the two 
figures, we make the following observations:  

• Within each column of Figure 2 the location of the graphed points (simulation scenarios) 
is quite similar, especially considering that the exact sample sizes (and thus the expected 
counts) differ across values of K (see 4.1.1 in page 18). The same observation applies to 
Figure 3 as well. For both methods, the scaled bias and the scaled RMSE do not change 
materially with the number of studies, K.  

The influence of K on scaled bias (and the scaled RMSE) is small.  

• For both methods, the scaled RMSE is generally highest for scenarios with expected 
counts <1, and tends to be smaller for higher expected counts. The absolute value of 
scaled bias follows a similar pattern.  

The normal approximations to the binomial are better as the expected count increases, and this 
translates to better values for scaled bias and scaled RMSE. Further, continuity corrections are 
more likely to be necessary when the expected count is less than 1; as discussed in the 5th bullet, 
continuity corrections introduce an upward bias for both methods.  
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• For expected counts less than 1 scaled bias and scaled RMSE are not very different 
between scenarios with smaller and larger heterogeneity: the red and black colored points 
are very near each other in Figure 2 and Figure 3. All other things being equal, scaled 
RMSE differs between smaller and larger heterogeneity scenarios when the expected 
counts are larger than 1 (Figure 4; and similarly for the absolute value of scaled bias – not 
shown). 

For small expected counts, the estimate of between study heterogeneity is very often 0 or close to 
0, and this attenuates any differences between scenarios with smaller and larger simulated 
heterogeneity.  

• When the expected count is less than 5, differences in scaled bias (and scaled RMSE) 
between small and large heterogeneity scenarios are most pronounced for the logistic 
transformation: Within each plot, the difference between red and black colored labels is 
larger along the horizontal axis compared to the vertical.  

A likely explanation pertains to the “floor effect” of the untransformed data: small proportions are 
bounded by 0. In contrast, the logistic transformation “expands” small proportion values to 
occupy the whole negative real axis, effectively removing the “floor effect”. This allows the 
summary estimate to be more influenced by studies with smaller proportion values, which are 
more likely to be drawn in simulations with large heterogeneity. 

• Analytically we expect the scaled bias of the summary estimate to be negative for 
untransformed data, and positive for logit-transformed data. The use of continuity 
corrections (cc) adds an additional bias component. This additional bias component can 

be positive, zero, or negative, for 
,

j
j k

cc
n

π> , 
,

j
j k

cc
n

π= , or 
,

j
j k

cc
n

π< , respectively.  

Scaled bias (for both transformed and untransformed data) can be positive, zero, or negative, 
depending on the relative magnitude of the two bias components, i.e., the bias component related 
to the mathematical transformation plus that related to the correction factors.   
As heterogeneity increases, it is more difficult to make qualitative predictions for the scaled bias.   
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Figure 2. Comparison of scaled bias between approximate methods: no transformation versus canonical 
transformation (logistic)  

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.   
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Figure 3. Comparison of scaled RMSE between approximate methods: no transformation versus canonical 
transformation (logistic) 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.    
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Figure 4. Difference in RMSE between small and large heterogeneity scenarios: no transformation versus 
canonical transformation (logistic) 

  
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias. The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories.  

• For both methods, coverage is better when the expected count is at least 5 (Figure 5), 
compared to ≤ 1 or between 1 and 5.  

The  normal is a better approximation to the binomial as the expected counts increase above 5.  

• For expected counts ≥5, coverage is better for the canonical (logistic) transformation 
compared to the untransformed data.  

• For expected counts ≤1, the coverage is very often 100% for the untransformed data or 
0% for the logistic transformation.  

For expected counts ≤ 1, continuity corrections are often needed for both approximate methods. 
For untransformed data, the combination of a positive bias (associated with the use of the 
continuity corrections) and the fact that the lower confidence interval can reach all the way to 0 
(“floor effect”) may explain the 100% coverage.  

• Coverage appears to become worse with increasing K. This is more evident for expected 
counts between 1 and 5.   

We see no obvious explanation for this pattern. 
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Figure 5. Comparison of coverage between approximate methods: no transformation versus canonical 
transformation (logistic) 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.  
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5.2.2 No transformation versus variance-stabilizing transformation (arcsine transformation) 
Figure 6 and Figure 7 compare scaled bias and scaled RMSE, respectively for random 

effects meta-analysis on untransformed versus arcsine-transformed data. Many of the 
observations and explanations below are similar to those made in Section 5.2.1.  

• For small expected counts (≤1), analyses based on the variance-stabilizing transformation 
has much smaller scaled bias and scaled RMSE than those based on untransformed data. 
This difference is attenuated for simulation scenarios with larger expected counts.   

Analyses based on untransformed data require continuity corrections (and most often when the 
expected counts are ≤1). As discussed in Section 5.2.1., the net effect is a large positive bias and a 
large scaled RMSE. However, for arcsine transformed data, no continuity corrections are needed, 
and thus the scaled bias and scaled RMSE are comparatively much smaller.  

• For both methods, the scaled bias and the scaled RMSE do not change dramatically with 
the number of studies, K.  

The influence of K on scaled bias (and the scaled RMSE) is small, as described in Section 5.2.1.  

• For expected counts less than 1 scaled bias and scaled RMSE are not very different 
between scenarios with smaller and larger heterogeneity. All other things being equal, 
differences in scaled RMSE between smaller and larger heterogeneity scenarios are 
evident for expected counts larger than 1 (Figure 8; and similarly of the absolute value of 
scaled bias – not shown).  

A likely explanation is that for small expected counts, the estimate of between study 
heterogeneity is very often 0 or close to 0, and this attenuates any differences between scenarios 
with smaller and larger simulated heterogeneity.  

• Analytically, we expect the scaled bias to be negative for analyses based on both 
untransformed and arcsine-transformed data (See appendix). As described in Section 
5.2.1, the need for continuity corrections (cc) adds an additional bias component for 
analyses based on untransformed data.  This additional bias component can be positive, 

zero, or negative, for 
,

j
j k

cc
n

π> , 
,

j
j k
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n

π= , or 
,

j
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n

π< , respectively.  
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Figure 6. Comparison of scaled bias between approximate methods: no transformation versus arcsine-
transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.  
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Figure 7. Comparison of scaled RMSE between approximate methods: no transformation versus variance 
stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.   
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Figure 8. Difference in RMSE between small and large heterogeneity scenarios: no transformation versus 
variance stabilizing (arcsine) transformation 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias. The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories. 

 

• For both methods, coverage is better when the expected count is at least 5 (Figure 5), 
compared to ≤ 1 or between 1 and 5.  

The normal is a better approximation to the binomial as the expected counts increase above 5.  

• For expected counts ≥5, coverage is better for the variance stabilizing transformation 
compared to the untransformed data.  

• Coverage appears to become worse with increasing K, and more so for scenarios where 
heterogeneity is large. This is more evident for expected counts between 1 and 5.  

We have found no explanation for this pattern. 
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Figure 9. Comparison of coverage between approximate methods: no transformation versus versus variance 
stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.  
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5.2.3 Canonical (logistic) versus variance-stabilizing (arcsine) transformation 
Figure 10 and Figure 11 compare scaled bias and scaled RMSE, respectively for random 

effects meta-analysis on logit- versus arcsine-transformed data. Many of the observations and 
explanations below are similar to those made in Sections 5.2.1 and 5.2.2.  

• For small expected counts (≤1), analyses based on arcsine transformed data have much 
smaller scaled bias and scaled RMSE compared to those based on logit-transformed data. 
For larger expected counts, the differences are very small (most points in Figure 10 and 
Figure 11 are on the diagonal).  

Analyses based on logit-transformed data require continuity corrections (and most often when the 
expected counts are ≤1). As discussed in Section 5.2.1., the net effect is a large positive bias and a 
large scaled RMSE. However, for arcsine transformed data (Section 5.2.2), no continuity 
corrections are needed, and thus the scaled bias and scaled RMSE are smaller.  

• For both methods, the scaled bias and the scaled RMSE do not change dramatically with 
the number of studies, K.  

The influence of K on scaled bias (and the scaled RMSE) is small, as described in Section 5.2.1.  

• For expected counts less than 1 scaled bias and scaled RMSE are not very different 
between scenarios with smaller and larger heterogeneity. All other things being equal, 
differences in scaled RMSE between smaller and larger heterogeneity scenarios are 
evident for expected counts larger than 1 (Figure 12; and similarly for the absolute value 
of scaled bias – not shown).  

For small expected counts, the estimate of between study heterogeneity is very often 0 or close to 
0, and this attenuates any differences between scenarios with smaller and larger simulated 
heterogeneity.  

• Analytically, we expect the scaled bias to be negative for analyses based on arcsine-
transformed data, and positive for analyses based on logit-transformed data (See 
appendix). As described in Section 5.2.1, the need for continuity corrections (cc) adds an 
additional bias component for analyses based on logit-transformed data.  This additional 

bias component can be positive, zero, or negative, for 
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respectively.  
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Figure 10. Comparison of scaled bias between approximate methods: canonical (logit) versus variance 
stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.    
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Figure 11. Comparison of scaled RMSE between approximate methods: canonical (logistic) versus variance 
stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.  
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Figure 12. Difference in RMSE between small and large heterogeneity scenarios: canonical (logistic) versus 
variance stabilizing (arcsine) transformation 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias.  The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories. 

• For both methods, coverage is better when the expected count is at least 5 (Figure 5), 
compared to expected counts of 1 or less, or between 1 and 5.  

This is probably because the normal is a better approximation to the binomial as the expected 
counts increase above 5.  

• For expected counts ≥5, coverage is similar for both methods.  
• For expected counts ≤1, analyses based on the arcsine transformation have better 

coverage.   

For expected counts ≤1, continuity corrections are often needed for logit-transformed data. The 
large positive bias (associated with the use of the continuity corrections) can displace the point 
estimate sufficiently to result in 0% coverage.  

• For expected counts between 1 and 5, coverage appears to become worse with increasing 
K, and more so for scenarios where heterogeneity is large.  

We have found no explanation for this pattern. 
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Figure 13. Comparison of coverage between approximate methods: canonical (logistic) versus variance 
stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.     
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5.2.4 Effect of the Correction Factor for Zero-Event Studies 
The approximate methods for untransformed and logit-transformed data apply a 

correction factor to adjust the estimated proportion for zero-event studies. The correction factor 
is arbitrary, in that it is not selected with a procedure that proposes a unique value. We report 
results using a continuity correction of 0.5, a very commonly used value. 

As discussed in the methods section, the correction factor introduces a bias that depends 
on the magnitude of the magnitude of the correction factor and the sample size of the study. 
Figure 14 shows the mean summary proportion for fixed effects inverse variance meta-analyses 
with 15 studies with average sample size equal to 115 for various values of the correction factor, 
assuming a true proportion of 0.010 and no between-study heterogeneity. Using a correction 
factor of 1 would result in almost no bias.   

Since the correction factor is unrelated to the true proportion, the overall meta-analysis 
estimate is skewed towards the adjusted estimate, resulting in greater absolute bias and RMSE, 
and poorer coverage. This typically occurs for small true proportions and sample sizes. 

Figure 14 shows results from simulations using a true proportion of , with 
 studies with medium sample sizes, and no heterogeneity. Approximately 1/3 of the 

simulated studies have 0 events. Note the estimated proportion is less than the true proportion for 
small values of the correction factor, and increases as the correction factor gets larger. For some 
value of the correction factor, the estimated proportion will be exactly the true proportion, but 
this is of no use in practice since the “optimal” value of the correction factor depends on the true 
proportion and sample sizes. 

 
Figure 14. Bias induced by correction factors in fixed effects meta-analysis of untransformed data 
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5.3.Pairwise comparisons between approximate and discrete likelihood methods for 
random effects meta-analysis  

For random effects meta-analysis, results based on the binomial likelihood (exact 
method) have scaled bias and scaled RMSE closer to zero, and coverage probabilities closer to 
95 percent, compared to those based on the approximate methods across a wide range of 
scenarios, as explained below.  

Therefore, we recommend the discrete likelihood method for random effects meta-
analysis over approximate methods. 

5.3.1 Approximate method with no transformation versus discrete likelihood method 
Figure 15 compares the scaled bias for random effects meta-analysis using the 

approximate method with untransformed data versus the discrete likelihood method that 
maximizes the binomial likelihood. Figure 16 depicts scaled RMSE. Based on the two figures, 
we make the following observations:  

• The absolute scaled bias (deviation from 0) is generally smaller for the discrete likelihood 
method compared to the approximate method on untransformed data. This is more 
profound for expected counts ≤1.  

Meta-analyses with approximate methods and untransformed data require continuity corrections 
(and most often when the expected counts are ≤1). As discussed in Section 5.2.1., the net effect is 
a large positive bias and a large scaled RMSE. Continuity corrections are not needed for the 
discrete likelihood method.  

• For meta-analyses with 15 or 30 studies and expected count larger than 1, the scaled bias 
of the discrete likelihood binomial method is approximately constant at each level of 
heterogeneity. For large heterogeneity, the scaled bias is approximately -10% of the 
respective true proportion, while for small heterogeneity, it is approximately 0.  

We have no explanation for the approximately constant scaled bias of -10%, which is observed 
across all proportions when heterogeneity is large. Other simulation studies have made the same 
observation.7  

• When all studies have large sample sizes and the heterogeneity is large, the approximate 
method with untransformed data has scaled bias closer to 0 compared to the discrete 
likelihood method. (See points L4 and L5 in red font on the rightmost column in Figure 
15).  

This is because for large heterogeneity and expected counts ≥5 the discrete likelihood methods 
have a scaled bias of approximately -10%, regardless of the sample sizes of the studies. In these 
same scenarios the normal approximation to the binomial is good enough to result in better scaled 
bias for the approximate compared to the discrete likelihood methods.  



 

 45 

• For expected counts ≤1, primarily, the scaled bias of both the discrete likelihood and the 
approximate methods is positive. For larger expected counts the scaled bias for both 
methods becomes negative.  

For the approximate methods, the explanation has been given in Section 5.2.1: Analytically we 
expect the bias to be negative. However, when the expected count is ≤1, studies will often have 0 
events, and a continuity correction factor, cc, is needed. This additional bias component can be 

positive, zero, or negative, for 
,

j
j k

cc
n

π> , 
,

j
j k

cc
n

π= , or 
,

j
j k

cc
n

π< , respectively.  

 
For the discrete likelihood method, the explanation is much simpler. When all studies have a 0 
numerator, the discrete likelihood method (random effects logistic regression) fails to converge. 
Because simulations that fail to converge do not contribute to the calculations of scaled bias, 
scaled RMSE and coverage, these metrics should be interpreted with caution.  

 
• For expected counts less than 1 scaled bias and scaled RMSE are not very different 

between scenarios with smaller and larger heterogeneity. All other things being equal, 
differences in scaled RMSE between smaller and larger heterogeneity scenarios are 
evident for expected counts larger than 1 (Figure 17; and similarly of the absolute value 
of scaled bias – not shown).  
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Figure 15. Comparison of scaled bias: approximate method (no transformation) versus discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.    
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Figure 16. Comparison of scaled RMSE: approximate method (no transformation) versus discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.    
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Figure 17. Difference in RMSE between small and large heterogeneity scenarios for analyses using the 
approximate method (no transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias.  The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories. 

 
• The coverage of the discrete likelihood binomial method is much closer to the desired 

value of 95% than that of the approximate method on untransformed data. This is 
particularly noticeable for K=15 and 30 studies.  

The normal approximation to the binomial is much better for large expected counts compared to 
smaller expected counts. Further, for small expected counts, 0 numerators are common and 
continuity corrections are needed for the approximate method. Thus, coverage is suboptimal with 
the approximate method. See also Sections 5.2.1 and 5.2.2.  
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Figure 18. Comparison of coverage: approximate method (no transformation) versus discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.  
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5.3.2 Approximate method with logistic transformation versus discrete likelihood method 
Figure 19 compares scaled bias for random-effects meta-analysis using the approximate 

method on logit-transformed data versus the discrete likelihood binomial method. Figure 20 
depicts the scaled RMSE. We make the following observations: 

 
• The absolute scaled bias (deviation from 0) is generally smaller for the discrete likelihood 

method compared to the approximate method on logistically transformed data. This is 
more profound for expected counts ≤5.  

Meta-analyses with approximate methods and untransformed data require continuity corrections 
(and most often when the expected counts are ≤1). As discussed in Section 5.2.1, the net effect is 
a large positive bias and a large scaled RMSE. Continuity corrections are not needed for the 
discrete likelihood method.  

• As discussed in Section 5.3.1, for meta-analyses with K=15 or 30 studies and expected 
count larger than 1, the scaled bias of the discrete likelihood binomial method is roughly 
constant at each level of heterogeneity. For large heterogeneity, the scaled bias is 
approximately -10% of the respective true proportion, while for small heterogeneity, it is 
approximately 0.  

We have no explanation for the approximately constant scaled bias of -10%, which is observed 
across all proportions when heterogeneity is large. Other simulation studies have made the same 
observation.7  

• For expected counts ≤1, primarily, the scaled bias for the discrete likelihood method is 
positive. It becomes negative for larger expected counts.   

As described in Section 5.3.1, when all studies have a 0 numerator, the discrete likelihood method 
(random effects logistic regression) fails to converge. Because simulations that fail to converge 
do not contribute to the calculations of scaled bias, scaled RMSE and coverage, these metrics are 
biased.  

 
• For expected counts less than 1, the scaled bias and the scaled RMSE are not very 

different between scenarios with smaller and larger heterogeneity. All other things being 
equal, differences in scaled RMSE between smaller and larger heterogeneity scenarios 
are evident for expected counts larger than 1 (Figure 21; and similarly of the absolute 
value of scaled bias – not shown).  
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Figure 19. Comparison of scaled bias: approximate method (logit transformation) versus discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.    
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Figure 20. Comparison of scaled RMSE: approximate method (logit transformation) versus discrete 
likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.   
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Figure 21. Difference in RMSE between small and large heterogeneity scenarios for analyses using the 
approximate methods (logit transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias.  The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories. 

 

Figure 22 shows coverage probabilities.  

• The coverage of the discrete likelihood binomial method is much closer to the desired 
value of 95% than that of the approximate method on logit-transformed data. This is 
particularly noticeable for K=15 and 30 studies.  

The normal approximation to the binomial is much better for large expected counts compared to 
smaller expected counts. Further, for small expected counts, 0 numerators are common and 
continuity corrections are needed for the approximate method. Thus, coverage is suboptimal with 
the approximate method. See also Sections 5.2.1 and 5.2.2.  
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Figure 22. Comparison of coverage: approximate method (logit transformation) versus discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.  
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5.3.3 Approximate method with arcsine transformation versus discrete likelihood binomial 
method 

Figure 23 compares scaled bias for random-effects meta-analysis using the approximate 
method with the variance stabilizing (arcsine) transformation versus the discrete likelihood 
method. Figure 24 depicts the scaled RMSE. We make the following observations: 

 
• The absolute scaled bias (deviation from 0) is generally smaller for the discrete likelihood 

method compared to the approximate method on arcsine transformed data. This is more 
pronounced for expected counts ≤5.  

The normal approximation to the binomial becomes better when the expected counts are >5 
compared with smaller expected counts.  

• As discussed in Section 5.3.1, for meta-analyses with K=15 or 30 studies and expected 
count larger than 1, the scaled bias of the discrete likelihood binomial method is roughly 
constant at each level of heterogeneity. For large heterogeneity, the scaled bias is 
approximately -10% of the respective true proportion, while for small heterogeneity, it is 
approximately 0.  

We have no explanation for the approximately constant scaled bias of -10%, which is observed 
across all proportions when heterogeneity is large. Other simulation studies have made the same 
observation.7  

• For expected counts less than 1, the scaled bias and the scaled RMSE are not very 
different between scenarios with smaller and larger heterogeneity. All other things being 
equal, differences in scaled RMSE between smaller and larger heterogeneity scenarios 
are evident for expected counts larger than 1 (Figure 25; and similarly of the absolute 
value of scaled bias – not shown).  
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Figure 23. Comparison of scaled bias: approximate method (arcsine transformation) versus discrete 
likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.    
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Figure 24. Comparison of scaled RMSE: approximate method (arcsine transformation) versus discrete 
likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.    
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Figure 25. Difference in RMSE between small and large heterogeneity scenarios for analyses using 
approximate methods (arcsine transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is 
observed for the absolute value of scaled bias.  The horizontal dotted line at zero is the line of no difference. Vertical 
lines separate scenarios by expected counts categories. 

 

Figure 26 shows coverage probabilities.  

• For expected counts above 5, the coverage probabilities are very similar for the 
approximate methods on arcsine-transformed data and the discrete likelihood methods.   

• For expected counts less than 5, the coverage of the discrete likelihood binomial method 
is much closer to the desired value of 95% than that of the approximate method on 
arcsine-transformed data.  
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Figure 26. Comparison of coverage: approximate method (arcsine transformation) versus discrete likelihood 
method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.  
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5.4.Comparison between fixed and random-effects discrete likelihood binomial methods  
Most meta-analyses use random effects methods. For random effects meta-analysis, 

discrete likelihood methods have less bias, smaller RMSE, and better coverage probabilities 
compared to approximate methods for a large range of simulation scenarios (Sections 5.2 and 
5.3), and are thus preferable.  

Here we present comparisons between fixed and random effects meta-analysis using the 
discrete likelihood methods. Figure 27 compares the scaled bias and Figure 28 the scaled RMSE 
with fixed versus random effects analyses. We make the following observations:  

• Results based on the fixed-effect discrete likelihood binomial method have smaller 
absolute scaled bias than results based on the random-effects discrete likelihood binomial 
method, particularly for data with high heterogeneity – see Figure 27, the whole left 
column.  

The fixed effects estimator with the discrete likelihood method is an unbiased estimator. Section 
5.3 discussed the bias observed with the random effects methods: it is constant at each level of 
heterogeneity, and is small (around 0%) for smaller heterogeneity, and approximately -10% for 
larger heterogeneity scenarios.  

• The scaled RMSE is approximately the same for the two methods – see Figure 28. 
• A large positive bias is apparent for the random effects analyses, when the expected 

counts are very small (<1).  

When the expected counts are small, it common to have meta-analyses where all studies have 
zero counts in the numerator. In such cases, the discrete likelihood method (random effects 
logistic regression) fails to converge. Because simulations that fail to converge do not contribute 
to the calculations of scaled bias, scaled RMSE and coverage, these metrics should be interpreted 
with caution.  

• The random-effects discrete likelihood method has better coverage than the fixed-effect 
method, particularly for data with expected counts at least 1 – see Figure 29.  

Fixed effects analyses assume no heterogeneity. Random effects analyses estimate between-study 
heterogeneity and incorporate it in the calculations, resulting in wider confidence intervals 
compared with fixed effects analyses. Therefore, coverage is better with random effects models.  
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Figure 27. Comparison of scaled bias: fixed versus random effects with the discrete likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 0 bias. Note the change in scale across columns.    
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Figure 28. Comparison of scaled RMSE: fixed versus random effects with the discrete likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal scaled RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, 
a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the 
true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small 
heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. Note 
the change in scale across columns.  
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Figure 29. Comparison of coverage: fixed versus random effects with the discrete likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line 
have equal coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a 
letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true 
proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, 
and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black 
reference lines indicate 95% coverage.    
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6. Results for Rates 
Simulation results for rates were very similar to those of proportions, and are thus not shown 

in detail. To convey the similarity, we show an example of the scaled bias for simulations of 
rates and of proportions for the comparison of approximate methods with the canonical versus 
the variance stabilizing transformation (Figure 30). The similarity in the results is obvious, and is 
theoretically expected, as the Poisson is a limiting case of the binomial distribution as the 
exposure increases.  

 

6.1.Overview of results across all methods  
Table 10 shows the scaled bias with the random effects analysis methods for selected 

scenarios with high heterogeneity. Table 11 and Table 12 show the corresponding scaled RMSE 
and coverage. We make the following general observations for scenarios with expected counts 1 
or less, between 1 and 5, and 5 or more: 

• For expected counts ≤1, the hybrid method has scaled bias and RMSE that are closer to 
zero and coverage probability closer to 95% compared to other methods.  

• For expected counts between 1 and 5 the random effects discrete likelihood method and 
the approximate method with the variance stabilizing transformation have comparable 
performance, and better than other methods.  

[For detailed descriptions and explanations refer to Sections 5.2 and 5.3; analogous points apply 
to simulations of rates as well.]  

• For expected counts of 5 or more, the differences between methods become less evident.  

For numerical reasons, the random effects discrete likelihood method does not always converge. 
The following general comments can be made:  

• For very small expected counts (<0.5) and for K=5 or K= 15the random effects discrete 
likelihood method reached convergence for fewer than 85% of the simulations (see 
column “Discrete (fraction converged)”). For expected counts above 1 or for K=30, the 
method converges practically for all simulations. 

• For expected counts above 1 the random effect discrete likelihood method converged 
(almost) always, and thus the performance of the hybrid strategy is identical to that with 
random effects. 

The random effects discrete likelihood method will not converge when all studies in a meta-
analysis have 0 events. This is more common in simulation scenarios with very low expected 
counts and when the number of studies is small. 

We can make the following general comments on the preferred methods (hybrid strategy-discrete 
likelihood and variance-stabilizing transformation-approximate likelihood): 
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• For expected counts larger than 10 the hybrid strategy for meta-analysis using the 
discrete likelihood has larger absolute bias than the approximate method using the 
variance stabilizing transformation, and the reverse for smaller counts.  

 [The explanations are analogous to those in Sections 5.2 and 5.3 for proportions; briefly, the 
discrete likelihood methods appear to have a constant relative bias of approximately -10% when 
heterogeneity is large, and when the expected number of counts is >5] 

• For very large expected counts (for example when the true proportion is 0.4) all 
compared methods converge in scaled bias and scaled RMSE.  

This is congruent with what we expect theoretically: the normal approximation to the Poisson 
improves with increasing expected counts.   

• The hybrid strategy using the discrete likelihood has better coverage probabilities than 
the other methods for the widest range of scenarios. 
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Table 10. Comparison of scaled bias across random effects methods for meta-analysis of rates (selected 
scenarios with high heterogeneity) 

Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small 0.1 2.689 3.207 -0.678 0.530 0.737 -0.079 
M1 5 0.001 medium 0.4 0.722 1.236 -0.561 0.836 0.080 -0.097 
S2 5 0.005 small 0.7 0.018 0.573 -0.430 0.972 -0.083 -0.109 
S3 5 0.01 small 1.5 -0.276 0.261 -0.289 1.000 -0.103 -0.103 
M2 5 0.005 medium 1.8 -0.313 0.211 -0.248 1.000 -0.100 -0.100 
X1 5 0.001 mixed 1.9 1.023 0.815 -0.158 0.994 0.066 0.059 
M3 5 0.01 medium 3.6 -0.359 0.073 -0.146 1.000 -0.094 -0.094 
L1 5 0.001 large 5.7 -0.337 0.014 -0.130 1.000 -0.100 -0.100 
S4 5 0.05 small 7.3 -0.296 0.012 -0.074 1.000 -0.074 -0.074 
X2 5 0.005 mixed 9.4 -0.065 0.161 -0.269 1.000 0.004 0.004 
S5 5 0.1 small 14.7 -0.243 -0.041 -0.060 1.000 -0.084 -0.084 
M4 5 0.05 medium 17.8 -0.240 -0.051 -0.059 1.000 -0.089 -0.089 
X3 5 0.01 mixed 18.8 -0.232 0.101 -0.192 1.000 -0.038 -0.038 
L2 5 0.005 large 28.4 -0.221 -0.058 -0.051 1.000 -0.085 -0.085 
M5 5 0.1 medium 35.6 -0.220 -0.081 -0.064 1.000 -0.101 -0.101 
L3 5 0.01 large 56.8 -0.206 -0.076 -0.052 1.000 -0.092 -0.092 
S6 5 0.4 small 58.8 -0.207 -0.088 -0.057 1.000 -0.099 -0.099 
X4 5 0.05 mixed 93.8 -0.275 -0.020 -0.078 1.000 -0.075 -0.075 
M6 5 0.4 medium 142.3 -0.185 -0.084 -0.044 1.000 -0.089 -0.089 
X5 5 0.1 mixed 187.6 -0.243 -0.053 -0.065 1.000 -0.087 -0.087 
L4 5 0.05 large 284 -0.200 -0.103 -0.060 1.000 -0.106 -0.106 
L5 5 0.1 large 567.9 -0.189 -0.098 -0.054 1.000 -0.099 -0.099 
X6 5 0.4 mixed 750.3 -0.210 -0.088 -0.063 1.000 -0.103 -0.103 
L6 5 0.4 large 2271.7 -0.166 -0.079 -0.033 1.000 -0.076 -0.076 
S1 15 0.001 small 0.1 3.330 4.002 -0.812 0.849 -0.161 -0.288 
M1 15 0.001 medium 0.3 0.812 1.400 -0.673 0.990 -0.144 -0.152 
S2 15 0.005 small 0.6 0.123 0.774 -0.543 1.000 -0.129 -0.129 
X1 15 0.001 mixed 0.8 0.904 0.982 -0.417 0.999 -0.049 -0.050 
S3 15 0.01 small 1.2 -0.252 0.420 -0.374 1.000 -0.108 -0.108 
M2 15 0.005 medium 1.6 -0.343 0.313 -0.303 1.000 -0.103 -0.103 
M3 15 0.01 medium 3.3 -0.415 0.159 -0.156 0.999 -0.081 -0.081 
X2 15 0.005 mixed 3.9 -0.198 0.227 -0.300 1.000 -0.065 -0.065 
L1 15 0.001 large 5.6 -0.371 0.053 -0.144 1.000 -0.103 -0.103 
S4 15 0.05 small 6.1 -0.414 0.028 -0.121 1.000 -0.109 -0.109 
X3 15 0.01 mixed 7.7 -0.355 0.110 -0.214 1.000 -0.093 -0.093 
S5 15 0.1 small 12.3 -0.342 -0.044 -0.089 1.000 -0.113 -0.113 
M4 15 0.05 medium 16.5 -0.307 -0.052 -0.072 1.000 -0.105 -0.105 
L2 15 0.005 large 27.9 -0.305 -0.070 -0.076 1.000 -0.111 -0.111 
M5 15 0.1 medium 32.9 -0.267 -0.078 -0.060 1.000 -0.106 -0.106 
X4 15 0.05 mixed 38.6 -0.348 -0.037 -0.085 1.000 -0.108 -0.108 
S6 15 0.4 small 49.2 -0.257 -0.093 -0.065 1.000 -0.113 -0.113 
L3 15 0.01 large 55.8 -0.277 -0.094 -0.072 1.000 -0.119 -0.119 
X5 15 0.1 mixed 77.2 -0.290 -0.063 -0.067 1.000 -0.106 -0.106 
M6 15 0.4 medium 131.6 -0.232 -0.099 -0.051 1.000 -0.106 -0.106 
L4 15 0.05 large 279 -0.231 -0.107 -0.059 1.000 -0.113 -0.113 
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Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 309 -0.250 -0.099 -0.059 1.000 -0.113 -0.113 
L5 15 0.1 large 558 -0.230 -0.112 -0.060 1.000 -0.115 -0.115 
L6 15 0.4 large 2231.9 -0.231 -0.115 -0.059 1.000 -0.113 -0.113 
S1 30 0.001 small 0.1 3.284 4.021 -0.840 0.980 -0.345 -0.358 
M1 30 0.001 medium 0.3 0.874 1.489 -0.708 1.000 -0.169 -0.169 
S2 30 0.005 small 0.6 0.109 0.779 -0.559 1.000 -0.134 -0.134 
X1 30 0.001 mixed 0.7 0.820 1.169 -0.441 1.000 -0.095 -0.095 
S3 30 0.01 small 1.2 -0.258 0.459 -0.375 0.999 -0.099 -0.099 
M2 30 0.005 medium 1.6 -0.338 0.381 -0.313 1.000 -0.095 -0.095 
M3 30 0.01 medium 3.1 -0.436 0.164 -0.185 0.999 -0.101 -0.101 
X2 30 0.005 mixed 3.3 -0.208 0.232 -0.304 1.000 -0.096 -0.096 
L1 30 0.001 large 4.6 -0.364 0.100 -0.163 1.000 -0.102 -0.102 
S4 30 0.05 small 6.2 -0.421 0.034 -0.115 1.000 -0.105 -0.105 
X3 30 0.01 mixed 6.5 -0.349 0.109 -0.207 1.000 -0.103 -0.103 
S5 30 0.1 small 12.4 -0.368 -0.035 -0.084 1.000 -0.110 -0.110 
M4 30 0.05 medium 15.7 -0.328 -0.046 -0.070 1.000 -0.104 -0.104 
L2 30 0.005 large 23.2 -0.343 -0.058 -0.083 1.000 -0.113 -0.113 
M5 30 0.1 medium 31.5 -0.294 -0.091 -0.075 1.000 -0.121 -0.121 
X4 30 0.05 mixed 32.5 -0.356 -0.032 -0.080 1.000 -0.103 -0.103 
L3 30 0.01 large 46.3 -0.303 -0.084 -0.070 1.000 -0.115 -0.115 
S6 30 0.4 small 49.8 -0.268 -0.091 -0.060 1.000 -0.111 -0.111 
X5 30 0.1 mixed 65 -0.324 -0.069 -0.074 1.000 -0.113 -0.113 
M6 30 0.4 medium 125.8 -0.252 -0.110 -0.061 1.000 -0.118 -0.118 
L4 30 0.05 large 231.7 -0.259 -0.115 -0.068 1.000 -0.124 -0.124 
X6 30 0.4 mixed 260.2 -0.260 -0.100 -0.060 1.000 -0.115 -0.115 
L5 30 0.1 large 463.4 -0.242 -0.110 -0.058 1.000 -0.115 -0.115 
L6 30 0.4 large 1853.4 -0.238 -0.114 -0.055 1.000 -0.114 -0.114 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 
1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  

The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods 
converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 
simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a 
scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 
1.000, because the random effects method was used in all simulations.  
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Table 11. Comparison of scaled RMSE across random effects methods for meta-analysis of rates (selected 
scenarios with high heterogeneity) 

Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small 0.1 2.716 3.365 0.862 0.530 1.180 1.099 
M1 5 0.001 medium 0.4 0.772 1.450 0.755 0.836 0.693 0.752 
S2 5 0.005 small 0.7 0.240 0.815 0.630 0.972 0.542 0.560 
S3 5 0.01 small 1.5 0.363 0.500 0.498 1.000 0.424 0.424 
M2 5 0.005 medium 1.8 0.411 0.458 0.478 1.000 0.418 0.418 
X1 5 0.001 mixed 1.9 1.213 1.005 0.463 0.994 0.579 0.582 
M3 5 0.01 medium 3.6 0.457 0.319 0.355 1.000 0.328 0.328 
L1 5 0.001 large 5.7 0.444 0.295 0.335 1.000 0.317 0.317 
S4 5 0.05 small 7.3 0.415 0.273 0.288 1.000 0.283 0.283 
X2 5 0.005 mixed 9.4 0.294 0.497 0.480 1.000 0.460 0.460 
S5 5 0.1 small 14.7 0.365 0.258 0.267 1.000 0.270 0.270 
M4 5 0.05 medium 17.8 0.352 0.238 0.244 1.000 0.252 0.252 
X3 5 0.01 mixed 18.8 0.363 0.394 0.399 1.000 0.384 0.384 
L2 5 0.005 large 28.4 0.334 0.241 0.243 1.000 0.250 0.250 
M5 5 0.1 medium 35.6 0.328 0.241 0.241 1.000 0.251 0.251 
L3 5 0.01 large 56.8 0.311 0.232 0.229 1.000 0.239 0.239 
S6 5 0.4 small 58.8 0.305 0.229 0.223 1.000 0.235 0.235 
X4 5 0.05 mixed 93.8 0.394 0.274 0.283 1.000 0.289 0.289 
M6 5 0.4 medium 142.3 0.293 0.236 0.229 1.000 0.238 0.238 
X5 5 0.1 mixed 187.6 0.354 0.250 0.252 1.000 0.259 0.259 
L4 5 0.05 large 284 0.297 0.235 0.223 1.000 0.237 0.237 
L5 5 0.1 large 567.9 0.294 0.239 0.228 1.000 0.240 0.240 
X6 5 0.4 mixed 750.3 0.306 0.229 0.224 1.000 0.240 0.240 
L6 5 0.4 large 2271.7 0.276 0.229 0.221 1.000 0.231 0.231 
S1 15 0.001 small 0.1 3.339 4.054 0.849 0.849 0.810 0.842 
M1 15 0.001 medium 0.3 0.827 1.487 0.722 0.990 0.520 0.527 
S2 15 0.005 small 0.6 0.183 0.877 0.605 1.000 0.396 0.396 
X1 15 0.001 mixed 0.8 0.974 1.065 0.499 0.999 0.439 0.440 
S3 15 0.01 small 1.2 0.282 0.520 0.451 1.000 0.292 0.292 
M2 15 0.005 medium 1.6 0.365 0.405 0.384 1.000 0.261 0.261 
M3 15 0.01 medium 3.3 0.440 0.248 0.253 0.999 0.208 0.208 
X2 15 0.005 mixed 3.9 0.250 0.392 0.380 1.000 0.270 0.270 
L1 15 0.001 large 5.6 0.405 0.178 0.228 1.000 0.200 0.200 
S4 15 0.05 small 6.1 0.446 0.162 0.205 1.000 0.193 0.193 
X3 15 0.01 mixed 7.7 0.382 0.253 0.295 1.000 0.225 0.225 
S5 15 0.1 small 12.3 0.384 0.150 0.172 1.000 0.185 0.185 
M4 15 0.05 medium 16.5 0.351 0.147 0.157 1.000 0.173 0.173 
L2 15 0.005 large 27.9 0.344 0.152 0.155 1.000 0.174 0.174 
M5 15 0.1 medium 32.9 0.309 0.150 0.144 1.000 0.167 0.167 
X4 15 0.05 mixed 38.6 0.388 0.155 0.169 1.000 0.180 0.180 
S6 15 0.4 small 49.2 0.292 0.156 0.144 1.000 0.169 0.169 
L3 15 0.01 large 55.8 0.315 0.159 0.147 1.000 0.174 0.174 
X5 15 0.1 mixed 77.2 0.333 0.149 0.151 1.000 0.171 0.171 
M6 15 0.4 medium 131.6 0.269 0.160 0.138 1.000 0.165 0.165 
L4 15 0.05 large 279 0.270 0.165 0.140 1.000 0.169 0.169 
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Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 309 0.289 0.159 0.140 1.000 0.169 0.169 
L5 15 0.1 large 558 0.266 0.167 0.139 1.000 0.169 0.169 
L6 15 0.4 large 2231.9 0.265 0.167 0.136 1.000 0.168 0.168 
S1 30 0.001 small 0.1 3.288 4.051 0.853 0.980 0.704 0.711 
M1 30 0.001 medium 0.3 0.881 1.534 0.728 1.000 0.418 0.418 
S2 30 0.005 small 0.6 0.144 0.835 0.588 1.000 0.300 0.300 
X1 30 0.001 mixed 0.7 0.873 1.206 0.490 1.000 0.332 0.332 
S3 30 0.01 small 1.2 0.273 0.515 0.416 0.999 0.222 0.222 
M2 30 0.005 medium 1.6 0.349 0.431 0.358 1.000 0.206 0.206 
M3 30 0.01 medium 3.1 0.448 0.214 0.235 0.999 0.173 0.173 
X2 30 0.005 mixed 3.3 0.235 0.314 0.344 1.000 0.200 0.200 
L1 30 0.001 large 4.6 0.385 0.163 0.210 1.000 0.166 0.166 
S4 30 0.05 small 6.2 0.438 0.122 0.166 1.000 0.157 0.157 
X3 30 0.01 mixed 6.5 0.366 0.192 0.253 1.000 0.178 0.178 
S5 30 0.1 small 12.4 0.391 0.104 0.131 1.000 0.148 0.148 
M4 30 0.05 medium 15.7 0.354 0.112 0.126 1.000 0.146 0.146 
L2 30 0.005 large 23.2 0.363 0.113 0.129 1.000 0.148 0.148 
M5 30 0.1 medium 31.5 0.316 0.128 0.119 1.000 0.152 0.152 
X4 30 0.05 mixed 32.5 0.376 0.109 0.130 1.000 0.143 0.143 
L3 30 0.01 large 46.3 0.325 0.124 0.117 1.000 0.148 0.148 
S6 30 0.4 small 49.8 0.289 0.125 0.106 1.000 0.141 0.141 
X5 30 0.1 mixed 65 0.346 0.120 0.123 1.000 0.149 0.149 
M6 30 0.4 medium 125.8 0.270 0.140 0.107 1.000 0.146 0.146 
L4 30 0.05 large 231.7 0.277 0.146 0.115 1.000 0.153 0.153 
X6 30 0.4 mixed 260.2 0.280 0.131 0.104 1.000 0.143 0.143 
L5 30 0.1 large 463.4 0.260 0.139 0.105 1.000 0.143 0.143 
L6 30 0.4 large 1853.4 0.256 0.142 0.102 1.000 0.143 0.143 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 
1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  

The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods 
converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 
simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a 
scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 
1.000, because the random effects method was used in all simulations.  
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Table 12. Comparison of coverage across random effects methods for meta-analysis of rates (selected 
scenarios with high heterogeneity) 

Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small 0.1 1.000 0.000 0.999 0.530 0.947 0.972 
M1 5 0.001 medium 0.4 1.000 0.737 0.836 0.836 0.963 0.969 
S2 5 0.005 small 0.7 1.000 0.849 0.824 0.972 0.971 0.972 
S3 5 0.01 small 1.5 1.000 0.912 0.891 1.000 0.964 0.964 
M2 5 0.005 medium 1.8 1.000 0.907 0.894 1.000 0.946 0.946 
X1 5 0.001 mixed 1.9 1.000 0.737 0.796 0.994 0.788 0.783 
M3 5 0.01 medium 3.6 1.000 0.929 0.899 1.000 0.942 0.942 
L1 5 0.001 large 5.7 1.000 0.904 0.865 1.000 0.879 0.879 
S4 5 0.05 small 7.3 1.000 0.897 0.868 1.000 0.876 0.876 
X2 5 0.005 mixed 9.4 1.000 0.643 0.789 1.000 0.557 0.557 
S5 5 0.1 small 14.7 1.000 0.864 0.842 1.000 0.826 0.826 
M4 5 0.05 medium 17.8 1.000 0.886 0.867 1.000 0.853 0.853 
X3 5 0.01 mixed 18.8 1.000 0.625 0.789 1.000 0.545 0.545 
L2 5 0.005 large 28.4 1.000 0.877 0.870 1.000 0.842 0.842 
M5 5 0.1 medium 35.6 0.998 0.851 0.840 1.000 0.825 0.825 
L3 5 0.01 large 56.8 1.000 0.856 0.869 1.000 0.845 0.845 
S6 5 0.4 small 58.8 0.995 0.869 0.875 1.000 0.846 0.846 
X4 5 0.05 mixed 93.8 1.000 0.817 0.809 1.000 0.718 0.718 
M6 5 0.4 medium 142.3 0.998 0.828 0.849 1.000 0.813 0.813 
X5 5 0.1 mixed 187.6 0.999 0.827 0.815 1.000 0.776 0.776 
L4 5 0.05 large 284 1.000 0.827 0.851 1.000 0.809 0.809 
L5 5 0.1 large 567.9 1.000 0.810 0.828 1.000 0.789 0.789 
X6 5 0.4 mixed 750.3 0.993 0.823 0.820 1.000 0.802 0.802 
L6 5 0.4 large 2271.7 0.999 0.831 0.851 1.000 0.784 0.784 
S1 15 0.001 small 0.1 1.000 0.000 0.542 0.849 0.967 0.972 
M1 15 0.001 medium 0.3 1.000 0.168 0.444 0.990 0.980 0.970 
S2 15 0.005 small 0.6 1.000 0.503 0.545 1.000 0.980 0.980 
X1 15 0.001 mixed 0.8 1.000 0.232 0.681 0.999 0.912 0.911 
S3 15 0.01 small 1.2 1.000 0.624 0.710 1.000 0.965 0.965 
M2 15 0.005 medium 1.6 1.000 0.713 0.774 1.000 0.949 0.949 
M3 15 0.01 medium 3.3 1.000 0.833 0.875 0.999 0.930 0.930 
X2 15 0.005 mixed 3.9 1.000 0.661 0.730 1.000 0.837 0.837 
L1 15 0.001 large 5.6 1.000 0.928 0.856 1.000 0.897 0.897 
S4 15 0.05 small 6.1 1.000 0.921 0.869 1.000 0.890 0.890 
X3 15 0.01 mixed 7.7 1.000 0.773 0.780 1.000 0.851 0.851 
S5 15 0.1 small 12.3 0.999 0.917 0.874 1.000 0.854 0.854 
M4 15 0.05 medium 16.5 1.000 0.901 0.880 1.000 0.842 0.842 
L2 15 0.005 large 27.9 1.000 0.887 0.893 1.000 0.865 0.865 
M5 15 0.1 medium 32.9 0.996 0.882 0.897 1.000 0.856 0.856 
X4 15 0.05 mixed 38.6 1.000 0.906 0.865 1.000 0.859 0.859 
S6 15 0.4 small 49.2 0.978 0.825 0.870 1.000 0.821 0.821 
L3 15 0.01 large 55.8 1.000 0.836 0.868 1.000 0.822 0.822 
X5 15 0.1 mixed 77.2 0.997 0.884 0.863 1.000 0.847 0.847 
M6 15 0.4 medium 131.6 0.990 0.816 0.895 1.000 0.835 0.835 
L4 15 0.05 large 279 1.000 0.787 0.885 1.000 0.823 0.823 
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Sce-
nario 

K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 15 0.4 mixed 309 0.979 0.804 0.874 1.000 0.827 0.827 
L5 15 0.1 large 558 1.000 0.783 0.877 1.000 0.814 0.814 
L6 15 0.4 large 2231.9 0.993 0.778 0.893 1.000 0.810 0.810 
S1 30 0.001 small 0.1 1.000 0.000 0.223 0.980 0.978 0.958 
M1 30 0.001 medium 0.3 1.000 0.000 0.192 1.000 0.980 0.980 
S2 30 0.005 small 0.6 1.000 0.174 0.306 1.000 0.970 0.970 
X1 30 0.001 mixed 0.7 1.000 0.000 0.470 1.000 0.931 0.931 
S3 30 0.01 small 1.2 1.000 0.362 0.508 0.999 0.963 0.963 
M2 30 0.005 medium 1.6 1.000 0.398 0.620 1.000 0.934 0.934 
M3 30 0.01 medium 3.1 1.000 0.754 0.747 0.999 0.887 0.887 
X2 30 0.005 mixed 3.3 1.000 0.598 0.569 1.000 0.886 0.886 
L1 30 0.001 large 4.6 1.000 0.829 0.764 1.000 0.884 0.884 
S4 30 0.05 small 6.2 1.000 0.926 0.815 1.000 0.848 0.848 
X3 30 0.01 mixed 6.5 1.000 0.796 0.676 1.000 0.866 0.866 
S5 30 0.1 small 12.4 0.989 0.935 0.848 1.000 0.803 0.803 
M4 30 0.05 medium 15.7 1.000 0.884 0.862 1.000 0.784 0.784 
L2 30 0.005 large 23.2 1.000 0.886 0.838 1.000 0.788 0.788 
M5 30 0.1 medium 31.5 0.994 0.809 0.859 1.000 0.739 0.739 
X4 30 0.05 mixed 32.5 1.000 0.927 0.860 1.000 0.834 0.834 
L3 30 0.01 large 46.3 1.000 0.836 0.865 1.000 0.762 0.762 
S6 30 0.4 small 49.8 0.935 0.796 0.883 1.000 0.770 0.770 
X5 30 0.1 mixed 65 0.997 0.853 0.840 1.000 0.760 0.760 
M6 30 0.4 medium 125.8 0.961 0.710 0.877 1.000 0.728 0.728 
L4 30 0.05 large 231.7 1.000 0.677 0.838 1.000 0.704 0.704 
X6 30 0.4 mixed 260.2 0.946 0.737 0.870 1.000 0.749 0.749 
L5 30 0.1 large 463.4 1.000 0.692 0.873 1.000 0.741 0.741 
L6 30 0.4 large 1853.4 0.980 0.666 0.886 1.000 0.730 0.730 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by 
expected count.  Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 
1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  

The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods 
converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 
simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a 
scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 
1.000, because the random effects method was used in all simulations.  
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Figure 30. Side by side comparison of results from simulations for proportions and rates: Comparison of scaled bias for approximate methods, 
canonical versus variance stabilizing transformations 

 
Rows correspond to number of studies. Columns correspond to ranges of expected events (for rates, left side) and ranges of expected counts (for proportions, 
right side). Points on the dashed line have equal scaled bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter 
(indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates or true proportions: 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of 
scenarios is plotted. The solid black reference lines indicate 0 bias. Note the change in scale across columns, and from the left to the right panel.  
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7. Practical Recommendations for Meta-analysis of Proportions or Rates 
The following are practical recommendations for meta-analysts, and probably apply 

generally. For most meta-analyses we would think that a random effects analysis will be adopted, 
because clinical and methodological diversity are more often present than not.  

 

Recommendation 1: Use meta-analysis methods that model within study data using t 

he binomial likelihood (for proportions) or the Poisson likelihood (for rates).  
 
If the number of events is 0 for the vast majority of studies, the random 
effects methods may not converge. It is reasonable to use a hybrid strategy 
where if the random effects analysis fails to converge, one performs a meta-
analysis with the fixed effects discrete likelihood method.  

 

Recommendation 2: If recommendation 1 cannot be followed, use meta-analysis models that rely 
on the normal approximation to the binomial (for proportions) or the 
Poisson (for rates) and a variance stabilizing transformation: arcsine for 
proportions, or square root for rates. 

 

Using methods other than the ones above recommended above can affect the meta-analysis 
summary results and conclusions. For example, using methods that necessitate continuity 
corrections in applications with rare events can yield very biased summary proportions or rates, 
and thus should be avoided.   
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Discussion 
We describe a comprehensive simulation study of a wide range of methods for meta-

analysis of proportions and rates. Based on the scaled bias, scaled RMSE and coverage 
probabilities of the compared methods we make concrete and clear recommendations of 
immediate relevance to meta-analytic practice.  Specifically, we recommend the discrete 
likelihood methods that model within study data using the binomial likelihood (for proportions) 
or the Poisson likelihood (for rates) over methods that use normal distributions to approximate 
within-study variability. If approximate methods have to be used, e.g., because there is no access 
to specialized statistical packages, we recommend using a variance stabilizing transformation, 
that is, the arcsine for proportions and the square root for rates.  

The recommended methods are straightforward to fit in the familiar generalized linear 
mixed models, GLMM, framework. Meta-analysts who are not statistically sophisticated and are 
not familiar with statistical programming environments such as R, Stata or SAS will probably be 
challenged to follow our primary recommendation. First, these environments do not have an 
elaborate point-and-click interface, and some programming may be needed. Second, GLMM 
software routines can be unstable, and the default options of the may need adjustment to ensure 
convergence of the fitting algorithm. Specifically, to evaluate the log likelihood of a GLMM is it 
necessary to perform a numerical integration step.17 The numerical integration is achieved by 
quadrature or adaptive quadrature algorithms, which become more precise (and more 
computationally expensive, i.e., slow) when they have more integration points they use. It is 
good practice to examine the robustness of the results using increasing number of integration 
points (e.g., 8, 12, 16, 20, 25).10-12 The estimate of the between-study variance rather than the 
estimate of the summary proportion is more sensitive to the number of integration points.11 

So what should one do if the GLMM algorithm does not converge? In our experience, 
non-convergence can be an issue if all or almost all studies have 0 in the numerators of the 
proportions or rates. Increasing the number of integration points does not necessarily fix the 
problem. When this happens, we propose to perform a meta-analysis using the discrete 
likelihood and fixed effects, or the approximate method with the variance stabilizing 
transformation as a secondary approach.   

When the true heterogeneity is large (0.50 times the value of the true proportion) the 
random effects discrete likelihood method has a constant scaled bias of approximately -10% both 
for meta-analyses of proportions and for meta-analyses of rates. This was observed by Hamza et 
al. as well.7 Hamza proposes, and we agree, that a penalized or restricted likelihood approach 
should be developed to account for this bias. We believe that it is premature to suggest 
“correcting” the summary proportion from random-effects approaches by 10%, before a 
theoretically motivated solution has been proposed.   

As of this writing, none of the standalone meta-analysis packages performs GLMM-
based meta-analysis of proportions or rates,13 14 18 despite the fact that it can be very easily added 
in those with a modular open source architecture such as OpenMeta-Analyst.14 Therefore, the 
second recommendation is important, as it is very easy to implement even in a spreadsheet 
program such as Microsoft Excel ™. We found clear differences between the three approximate 
methods in the scaled bias, scaled RMSE and coverage probabilities, with the variance 
stabilizing transformations being preferable. In a limited simulation study comparing the discrete 
likelihood method with the canonical transformation for the meta-analysis of proportions, Hamza 
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et al. conjectured that all approximate methods would have comparably large bias, because 
“there will always be a correlation between the estimate and the within-study variance, as they 
are determined by the same parameter […]”.7 Hamza et al. did not recognize the arcsine 
transformation as a variance stabilizing one, i.e., one that does not suffer from the bias induced 
by the correlation between the estimates of the proportion (or rate) and the variance.  

In sum, enough information exists to provide strong guidance on the performance 
characteristics of alternative methods for the meta-analysis of proportions and rates. While 
differences between the approximate and the discrete likelihood methods attenuate when the 
number of expected counts is larger than 5, and the sample sizes or the exposures are large, it is 
probably best to follow the herein provided recommendations more generally.   
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Appendix 
Appendix Table 1 - Sample Sizes Used in Simulations for Proportions 

 Small Medium Large Mixed 

5 Studies 41 50 33 26 21 120 69 161 154 
138 

339 974 619 675 
576 

26 9 109  63 887 

15 Studies 32 28 15 30  6 46 
45 33 21 29 26 20 
19 44 11 

176  78 152  85    
60  92  73  55 126 
164 113 126 138 
165 118 

655 326 815 889 
991 373 262 565 
956 245 701 282 
881 810 676 

46  42  21  16  35  
26  32  83 197 
119 198 100  58 
241 794 

30 Studies 20 23 22 15  8 13 
27 11 38 48 44 31 
50 40 33 45 43 16  
8 34 42 35 24 29 
31 30  5 20 21 13 

 60  71 153 184 
183 105  99 145 
112  59 153  59  
90   70 154 134 
124 176  59  66 
104  94  75  66 
117  62 144 113 
132  62 

270 626 212 267 
760 217 659 946 
547 884 829 342 
680 261 272 206 
259 440 906 717 
234 421 772 714 
477 512 529 640 
900 958 

43  36  49  11  27   
5  18  14  31  27  
50  47   9  50  12 
157 199 178  91 
121 173 107 181 
155 169 120 186 
441 324 782 

These vectors were drawn randomly and then kept fixed throughout the simulations. 
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Appendix Table 2 - Sample Sizes Used in Simulations for Rates 

Number 
of studies 

 Small  Medium Large Mixed 

K=5 170 199 142 120 
104 

339 237 421 407 
375 

2143 9686 5469 
6137 4961 

120   64  317  226 
8652 
 

K=15 138 125  84 132  
53 186 181 142 
102 130 120 100  
99 180  72 

452 256 403 269 
220 284 245 210 
352 427 325 352 
375 429 336 

5893 1994 7792 
8674 9889 2552 
1232 4823 9467 
1025 6443 1463 
8575 7733 6143 

187  171  102   86  
149  119  139  265  
494  338  495  299  
216  977 7549 

K=30 101 110 107  85  
62  79 123  71 
161 193 178 138 
198 165 142 184 
176  87  61 145 
173 148 114 129 
136 132  52 100 
105  77 

 220 242 405 467 
466 309 297 389 
323 218 406 217 
280 240 407 367 
348 452 218 231 
308 288 249 231 
334 223 388 326 
363 223 

1330 5551  633 
1284 7146  691 
5941 9358 4609 
8613 7966 2180 
6198 1220 1353 561 
1194 3349 8876 
6638  903 3120 
7281 6598 3785 
4205 4399 5724 
8807 9493 

175  151  197   70  
125   50   95   82  
138  124  199  189   
64  197   73   414  
497  455  281  342  
446  314  461  409  
437  339  471 3353 
1967 7399 

These vectors were drawn randomly and then kept fixed throughout the simulations. 
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Appendix Table 3. Formulas for setting the parameters of beta, uniform and gamma distributions 

Parameters for the 
distribution of the 
true effects in 
simulations 

Explanations for 
simulations of 
proportions and rates 

Formulas for the first 
parameter 

Formulas for the 
second parameter 

Beta: parameters  
and  

For proportions, set  

and,j j jµ π σ τ π= =
 

For rates: Not 
applicable 

   

Uniform: bounds  
[a, b]  

For proportions, set  

and,j j jµ π σ τ π= =
 

For rates, set  

and,j j jµ λ σ τ λ= =  

 3b µ σ= +  

Gamma: parameters 
 and  

For proportions: Not 
applicable  

For rates, set  

and,j j jµ λ σ τ λ= =
 

  

In the above, j indexes the simulation scenario. As described in the methods, the standard deviation of the true 
effects is parameterized as a multiplier on the magnitude of the true proportion or rate. When 0jτ =  the above 
distributions are not used and all simulated studies have the same true effect (see Methods).  
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Abbreviations 
 

AHRQ Agency for Healthcare Research and Quality 

RCT Randomized controlled trial 

EPC Evidence based Practice Center 

CER Comparative Effectiveness Review 
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