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Chapter 11. Sensitivity Analysis 
 
Abstract 
This chapter provides an overview of study design and analytic assumptions made in 
observational comparative effectiveness research (CER), discusses assumptions that can be 
varied in a sensitivity analysis, and describes ways to implement a sensitivity analysis.  All 
statistical models (and study results) are based on assumptions, and the validity of the inferences 
that can be drawn will often depend on the extent to which these assumptions are met.  The 
recognized assumptions on which a study or model rests can be modified in order to assess the 
sensitivity, or consistency in terms of direction and magnitude, of an observed result to particular 
assumptions.  In observational research, including much of comparative effectiveness research, 
the assumption that there are no unmeasured confounders is routinely made, and violation of this 
assumption may have the potential to invalidate an observed result.  The analyst can also verify 
that study results are not particularly affected by reasonable variations in the definitions of the 
outcome/exposure.  Even studies that are not sensitive to unmeasured confounding (such as 
randomized trials) may be sensitive to the proper specification of the statistical model.  Analyses 
are available that can be used to estimate a study result in the presence of an hypothesized 
unmeasured confounder, which then can be compared to the original analysis to provide 
quantitative assessment of the robustness (how much does the estimate change if we posit the 
existence of a confounder) of the original analysis to violations of the assumption of no 
unmeasured confounders.   Finally, an analyst can examine whether specific sub-populations 
should be addressed in the results since the primary results may not generalize to all sub-
populations if the biologic response or exposure may differ in these subgroups.  The chapter 
concludes with a checklist of key considerations for including sensitivity analyses in a CER 
protocol or proposal. 
 

Introduction 
Observational studies and statistical models rely on assumptions, which can range from how a 
variable is defined or summarized, to how a statistical model is chosen and parameterized.  Often 
these assumptions are reasonable, and, even when violated, may result in unchanged effect 
estimates.  When the results of analyses are consistent or unchanged by testing variations on 
underlying assumptions, they are said to be “robust.”  However, violations in assumptions that 
result in meaningful effect estimate changes provide insight into the validity of the inferences 
that might be drawn from a study.  A study’s underlying assumptions can be altered along a 
number of dimensions, including study definitions (modifying exposure/outcome/confounder 
definitions), study design (changing or augmenting the data source or population under study), 
and modeling (modifying a variable’s functional form or testing normality assumptions), to 
evaluate robustness of results.    
 
This chapter considers the forms of sensitivity analysis that can be included in the analysis of an 
observational comparative effectiveness study, provides examples, and offers recommendations 
about the use of sensitivity analyses.    

      
Unmeasured Confounding and Study Definition Assumptions 
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Unmeasured Confounding 
The underlying assumption of all epidemiological studies is that there is no unmeasured 
confounding.  However, some potential confounding variables may not be measured or available 
for analysis: the unmeasured confounding variable could either be a known confounder that is 
not present in the type of data being used (e.g., obesity is commonly not available in prescription 
claims databases) or an unknown confounder where the confounding relation is unsuspected.   
Quantifying the effect that an unmeasured confounding variable would have on study results 
provides an assessment of the sensitivity of the result to violations of the assumption of no 
unmeasured confounding.  The robustness of an association to the presence of a confounder1,2 
can alter inferences that might be drawn from a study, which then might change how the study 
results are used to  influence translation  into clinical or policy decision-making.  Methods for 
assessing the potential impact of unmeasured confounding on study results, as well as quasi-
experimental methods to account for unmeasured confounding, are discussed later in the chapter. 
 
Comparison Groups   
An important choice in study design is the selection of suitable treatment and comparison 
groups.  This step can serve to address many potential limitations of a study, such as how new 
user cohorts eliminate the survivor bias that may be present if current (prevalent) users are 
studied (which would reflect only people who could tolerate the treatment and, most likely, for 
whom treatment appeared to be effective).3  However, this new user approach can limit the 
questions that can be asked in a study, as excluding prevalent users might omit long term users 
(which could overlook risks that arise over long periods of use).  For example, when Rietbrock et 
al. considered the comparative effectiveness of warfarin and aspirin in atrial fibrillation4 in the 
General Practice Research Database, they looked at current use and past use instead of new use.  
This is a sensible strategy in a general practice setting as these medications may be started long 
before the patient is diagnosed with atrial fibrillation.  Yet, as these medications may be used for 
decades, long term users are of great interest.  In this study, the authors used past use to address 
indication, by comparing current users to past users (an important step in a prevalent users 
study).   
 
One approach is to include several different comparison groups and use the observed differences 
in potential biases with the different comparison groups as a way to assess the robustness of the 
results. For example, when studying the association between thiazide diuretics and diabetes, one 
could create reference groups including “non-users”, “recent past-users”, “distant past-users” and 
“users of other anti-hypertensive medications”.  One would presume that the risk of incident 
diabetes among the “distant past-users” should resemble that of the “non-users”; if not there is a 
possibility that confounding by indication is the reason for the difference in risk.   
 
Exposure Definitions   
Establishing a time window that appropriately captures exposure during etiologically relevant 
time periods can represent a challenge in study design when decisions need to be made in the 
presence of uncertainty.5  Uncertainty about the most appropriate way to define drug exposure 
can lead to questions about what would have happened if the exposure had been defined a 
different way.  A substantially different exposure-outcome association observed under different 
definitions of exposure (such as different time windows or dose [e.g., either daily or cumulative]) 
might provide insight into the biological mechanisms underlying the association or provide clues 
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about potential confounding or unaddressed bias.  As such, varying the exposure definition and 
re-analyzing under different definitions serves as a form of sensitivity analysis.  
 
Outcome Definitions   
The association between exposure and outcome can also be assessed under different definitions 
of the outcome.  Often a clinically relevant outcome in a data source can be ascertained in 
several ways (e.g., a single diagnosis code, multiple diagnosis codes, a combination of diagnosis 
and procedure codes, etc.).  The analysis can be repeated using these different definitions of the 
outcome, which may shed light on the how well the original outcome definition truly reflects the 
condition of interest.   
 
Beyond varying a single outcome definition, it is also possible to evaluate the association 
between the exposure and clinically different outcomes.  If the association between the exposure 
and one clinical outcome is known from a study with strong validity (such as from a clinical 
trial) and can be reproduced in the study, the observed association between the exposure of 
interest and an outcome about which external data are not available becomes more credible.  
Since some outcomes might not be expected to occur immediately after exposure (e.g., cancer), 
the study could employ different lag (induction) periods between exposure and the first outcomes 
to be analyzed in order to assess the sensitivity of the result to the definition.  This result can lead 
either to insight into potential unaddressed bias or confounding, or it could be used as a basis for 
discussion about etiology (e.g., does the outcome have a long onset period).   
 
Covariate Definitions 
Covariate definitions can also be modified to assess how well they address confounding in the 
analysis.  Although a minimum set of covariates may be used to address confounding, there may 
be an advantage to using a staged approach where groups of covariates are introduced, leading to 
progressively greater adjustment.  If done transparently, this approach may provide insight into 
which covariates have relatively greater influences on effect estimates, permitting comparison 
with known or expected associations or permitting the identification of possible intermediate 
variables.   
 
Finally, some covariates are known to be misclassified under some approaches.  A classic 
example is an “intention to treat” analysis which assumes that each participant continues to be 
exposed once they have received an initial treatment.  Originally used in the analysis of 
randomized trials, this approach has been used in observational studies as well.6  It can be 
worthwhile to do a sensitivity analysis on studies that use an intention to treat approach to see 
how different an “as treated” analysis would be even if intention to treat is the main estimate of 
interest, mostly in cases where there is differential adherence in the data source between two 
therapeutic approaches.7   
 
Summary Variables 
Study results can also be affected by the summarization of variables.  For example, time can be 
summarized, and differences in the time window during which exposure is determined can lead 
to changes in study effect estimates.  For example, the risk of venous thromboembolism rises 
with duration of use for oral contraceptives;8 an exposure definition that did not consider the 
cumulative exposure to the medication might underestimate the difference in risk between two 
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different formulations of oral contraceptive. Alternately, effect estimates may vary with changes 
in the outcome definition.  For example, an outcome definition of all cardiovascular events 
including angina could lead to a different effect estimate than an outcome definition including 
only myocardial infarction.  Sensitivity analyses of the outcome definition can allow for a richer 
understanding of the data, even for models based on data from a randomized controlled trial.    
 
Selection Bias 
The assessment of selection bias through sensitivity analysis involves assumptions regarding 
inclusion or participation by potential subjects, and results can be highly sensitive to 
assumptions.  For example, the over-sampling of cases exposed to one of the drugs under study 
(or, similarly, an under-sampling) can lead to substantial changes in effect measures over ranges 
that might plausibly be evaluated.  Even with external validation data, which may work for 
unmeasured confounders,9 it is difficult to try and account for more than a trivial amount of 
selection bias.  Generally, if there is strong evidence of selection bias in a particular data set it is 
best to seek out alternative data sources. 
 
One limited exception may be when the magnitude of bias is known to be small.10  This may be 
true for non-random loss to follow-up in a patient cohort.  Since the baseline characteristics of 
the cohort are known, it is possible to make reasonable assumptions about how influential this 
bias can be.  But, in the absence of such information, it is generally better to focus on identifying 
and eliminating selection bias at the data acquisition or study design stage.   
 
Data Source, Sub-Populations, and Analytic Methods 
The first section of this chapter covered traditional sensitivity analysis to test basic assumptions 
such as variable definitions and to consider the impact of an unmeasured confounder.  These 
issues should be considered in every observational study of comparative effectiveness research. 
However, there are some additional sensitivity analyses that should be considered, depending on 
the nature of the epidemiological question and the data available.  Not every analysis can (or 
should) consider these factors, but they can be as important as the more traditional sensitivity 
analysis approaches.   
 

Data Source   
For many comparative effectiveness studies, the data used for the analysis were not specifically 
collected for the purpose of the research question.  Instead, the data may have been obtained as 
part of routine care or for purposes of medical billing.  In such cases, it may be possible to 
acquire multiple data sources for a single analysis (and use the additional data sources as a 
sensitivity analysis).  Where this is not feasible, it may be possible to consider differences 
between study results and results obtained from other papers that use different data sources.   
While all data sources have inherent limitations in terms of the data that are captured by the 
database, these limitations can be accentuated when the data were not prospectively collected for 
the specific research purpose.11  For example, secondary use of data increases the chances that a 
known but unmeasured confounder may explain part or all of an observed association.  A 
straightforward example of the differences in data capture can be seen by comparing data from 
Medicare (i.e., US medical claims data) and the General Practice Research Database (i.e., British 
electronic medical records collected as part of routine care).11  Historically, Medicare data have 
lacked the results of routine laboratory testing and measurement (quantities like height, weight, 
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blood pressure, and glucose measures), but include detailed reporting on hospitalizations (which 
are billed and thus well recorded in a claims database).  In a similar sense, historically, the 
General Practice Research Database has had weaker reporting on hospitalizations (since this 
information is captured only as reports given back to the General Practice, that usually are less 
detailed), but better recording than Medicare data for  routine measurements (such as blood 
pressure) that are done as part of a standard medical visit.   
 
Issues with measurement error also can emerge because of the process by which data are 
collected.  For example, “myocardial infarction” coded for the purposes of billing may vary 
slightly or substantially from a clinically verified outcome of myocardial infarction.  As such, 
there will be an inevitable introduction of misclassification into the associations.  Replicating 
associations in different data sources can provide an idea of how changes to the operational 
definition of an outcome can alter the estimates (e.g., comparing a report to a general practitioner 
(GP) with a hospital ICD-9 code).  Replication of a study using different data sources is more 
important for less objectively clear outcomes (such as depression) than it is for more objectively 
clear outcomes (such as all-cause mortality).  
 
An analysis conducted in a single data source may be vulnerable to bias due to systematic 
measurement error or the omission of a key confounding variable.  Associations that can be 
replicated in a variety of data sources, each of which may have used different definitions for 
recording information and which have different covariates available, provide reassurance that the 
results are not simply due to the unavailability of an important confounding variable in a specific 
data set.  Furthermore, when estimating the possible effect of an unmeasured confounder on 
study results, data sets that measure the confounder may provide good estimates of the 
confounder’s association with exposure and outcome (and provide context for results in data 
sources without the same confounder information).   
 
An alternative to looking at completely separate datasets is to consider supplementing the 
available data with external data sources.  An example of a study that took the approach of 
supplementing data was conducted by Huybrechts et al.12.  They looked at the comparative 
safety of typical and atypical antipsychotics among nursing home residents.  The main analysis 
used prescription claims (Medicare and Medicaid data) and found, using high dimensional 
propensity score adjustment, that conventional anti-psychotics were associated with an increase 
in 180 day mortality risk  (a risk difference of 7.0 per 100 persons [95% CI: 5.8, 8.2]).  The 
authors then included data from MDS (Minimum Data Set) and OSCAR (Online Survey, 
Certification and Reporting) which contains clinical covariates and nursing home 
characteristics.12  The result of including these variables was an essentially identical estimate of 
7.1 per 100 persons (95% CI: 5.9, 8.2).12  This showed that these differences were robust to the 
addition of these additional covariates.  It did not rule out other potential biases, but it did 
demonstrate that simply adding MDS and OSCAR data would not change statistical inference.   
 
While replicating results across data sources provides numerous benefits in terms of 
understanding the robustness of the association and reducing the likelihood of a chance finding, 
it is often a luxury that is not available for a research question, and inferences may need to be 
drawn from the data source at hand.  
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Key Sub-Populations 
Therapies are often tested on an ideal population (e.g., uncomplicated patients thought to be 
likely to adhere to medication) in clinical trials.  Once the benefit is clearly established in trials, 
the therapy is approved for use and becomes available to all patients.  However, there are several 
cases where it is possible that the effectiveness of specific therapies can be subject to effect 
measure modification.  While a key sub-population may be independently specified as a 
population of interest, showing that results are homogeneous across important sub-populations 
can build confidence in applying the results uniformly to all sub-populations.  Alternatively, it 
may highlight the presence of effect measure modification and the need to comment on 
population heterogeneity in the interpretation of results.  As part of the analysis plan, it is 
important to state whether measures of effect will be estimated within these or other sub-
populations present in the research sample in order to assess possible effect measure 
modification: 
 
Pediatric populations.  Children may respond differently to therapy than adults, and dosing may 
be more complicated.  Looking at children as a separate and important sub-group may make 
sense if a therapy is likely to be used in children.   
 
Genetic variability.  The issue of genetic variability is often handled only by looking at different 
ethnic or racial groups (who are presumed to have different allele frequencies).  Some 
medications may be less effective in some populations due to the different polymorphisms that 
are present in these persons, though indicators of race and ethnicity are only surrogates for 
genetic variation.   
 
Complex patients.  These are patients who suffer from multiple disease states at once.  These 
disease states (or the treatment[s] for these disease states) may interfere with each other, 
resulting in a different optimal treatment strategy in these patients.  A classic example is the 
treatment of cardiovascular disease in HIV infected patients.  The drug therapy used to treat the 
HIV infection may interfere with medication intended to treat cardiovascular disease.  Treatment 
of these complex patients is of great concern to clinicians, and these patients should be 
considered separately where sample size considerations allow for this. 
 
Older adults.  Older adults are another population that may have more drug side effects and 
worse outcomes from surgeries and devices.  Furthermore, older adults are inherently more 
likely to be subject to polypharmacy and thus have a much higher risk of drug-drug interactions.    
 
Most studies lack the power to look at all of these different populations, nor are they likely to be 
all present in a single data source.  However, when it is feasible to do so, it can be useful to 
explore these sub-populations to determine if the overall associations persist or if the best choice 
of therapy is population dependent.  These can be important clues in determining how stable 
associations are likely to be across key sub-populations.  In particular, the researcher should 
identify segments of the population to which there are concerns about generalizing results.  For 
example, randomized trials of heart failure often exclude large portions of the patient population 
due to complexity of the underlying disease state.13  It is critical to try to include inferences to 
these complex sub-populations when doing comparative effectiveness research with heart failure 
as the study outcome, as that is precisely where the evidence gap is the greatest.   
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Cohort Definition and Statistical Approaches 
If it is possible to do so, it can also be extremely useful to consider the use of more than one 
cohort definition or statistical approach to ensure that the effect estimate is robust to the 
assumptions behind these approaches.  There are several options to consider as alternative 
analysis approaches.  
 
Samy Suissa illustrated how the choice of cohort definition can affect effect estimates in his 
paper on immortal time bias.14  He considered five different approaches to defining a cohort, 
with person time incorrectly allocated (causing immortal time bias) and then repeated these 
analyses with person time correctly allocated (giving correct estimates).  Even in this 
straightforward example, the corrected hazard ratios varied from 0.91 to 1.13 depending on the 
cohort definition.  There were five cohort definitions used to analyze the use of anti-thrombotic 
medication and the time to death from lung cancer: time-based cohort, event-based cohort, 
exposure-based cohort, multiple-event-based cohort, and event-exposure-based cohort.  These 
cohorts produce hazard ratios of 1.13, 1.02, 1.05, 0.91, and 0.95, respectively. While this may 
not seem like an extreme difference in results, it does illustrate the value of using varying 
assumptions to hone in on an understanding of the stability of the associations under study with 
different analytical approaches, as in this example where point estimates varied by about +/- 10% 
depending in how the cohort was defined.   
 
One can also consider the method of covariate adjustment to see if it might result in changes in 
the effect estimates.  One option to consider as an adjunct analysis is the use of a high 
dimensional propensity score,15 as this approach is typically applicable to the same data upon 
which a conventional regression analysis is performed.  The high dimensional propensity score is 
well suited to handling situations in which there are multiple weak confounding variables.  This 
is a common situation in many claims database contexts, where numerous variables can be found 
that are associated (perhaps weakly) with drug exposure, and these same variables may be 
markers for (i.e., associated with) unmeasured confounders.  Each variable may represent a weak 
marker for an unmeasured confounder, but collectively (such as through the high dimensional 
propensity score approach) their inclusion can reduce confounding from this source.  This kind 
of propensity score approach is a good method for validating the results of conventional 
regression models.   
 
Another option that can be used, when the data permit it, is an instrumental variable (IV) analysis 
to assess the extent of bias due to unmeasured confounding (see Chapter 10 for a detailed 
discussion of IV analysis).16  While there have been criticisms that use of instruments such as 
physician or institutional preference may have assumptions that are difficult to verify and may 
increase the variance of the estimates17, an instrumental variable analysis has the potential to 
account for unmeasured confounding factors (which is a key advantage), and traditional 
approaches also have unverifiable assumptions.  Also, estimators resulting from the IV analysis 
may differ from main analysis estimators (see Identification Supplement), and investigators 
should ensure correct interpretation of results using this approach.  
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Examples of Sensitivity Analysis of Analytic Methods 
Sensitivity analysis approaches to varying analytic methods have been used to build confidence 
in results.  One example is a study by Schneeweiss et al.18 of the effectiveness of aminocaproic 
acid compared with aprotinin for the reduction of surgical mortality during coronary-artery 
bypass grafting (CABG).  In this study, the authors demonstrated that three separate analytic 
approaches (traditional regression, propensity score, and physician preference instrumental 
variable analyses) all showed an excess risk of death among the patients treated with aprotinin 
(estimates ranged from a relative risk of 1.32 [propensity score] to a relative risk of 1.64 
[traditional regression analysis]).  Showing that different approaches, each of which used 
different assumptions, all demonstrated concordant results was further evidence that this 
association was robust.   
 
Sometimes a sensitivity analysis can reveal a key weakness in a particular approach to a 
statistical problem.  Delaney et al.19 looked at the use of case-crossover designs to estimate the 
association between warfarin use and bleeding in the General Practice Research Database.  They 
compared the case-crossover results to the case-time-control design, the nested case control 
design, and to the results of a meta-analysis of randomized controlled trials.  The case-crossover 
approach, where individuals serve as their own controls, showed results that differed from other 
analytic approaches.  For example, the case crossover design with a lagged control window (a 
control window that is placed back one year) estimated a rate ratio of 1.3 (95% confidence 
interval: 1.0–1.7) compared with a rate ratios of 1.9 for the nested case control design, 1.7 for the 
case time control design and 2.2 for a meta-analysis of clinical trials.18  Furthermore, the results 
showed a strong dependence on the length of the exposure window (ranging from a rate ratio of 
1.0 to 3.6), regardless of overall time on treatment. These results provided evidence that results 
from a case crossover approach in this particular situation needed a cautious interpretation as 
different approaches were estimating incompatible magnitudes of association, were not 
compatible with the estimates from trials, and likely violated an assumption of the case crossover 
approach (transient exposure).  Unlike the Schneeweiss et al. example,18 for which the results 
were consistent across analytic approaches, divergent results require careful consideration of 
which approach is the most appropriate (given the assumptions made) for drawing inferences, 
and investigators should provide a justification for the determination in the discussion.   
 
Sometimes the reasons for differential findings with differences in approach can be obvious 
(concerns over the appropriateness of the case-crossover approach, in the Delaney et al. example 
above).18  In other cases, differences can be small and the focus can be on the overall direction of 
the inference (like in the Suissa example above).14  Finally, there can be cases where two 
different approaches (e.g., an IV approach and a conventional analysis) yield different inferences 
and it can be unclear which one is correct.  In such a case, it is important to highlight these 
differences, and to try and determine which set of assumptions makes sense in the structure of 
the specific problem.    
 
Table 11.1. Study aspects that can be evaluated through sensitivity analysis 
 

Aspect Evaluable through Sensitivity 
Analysis 

Further Requirements 



                                                                         Chapter 11. Sensitivity Analysis 

Page 9 of 19 
 

Aspect Evaluable through Sensitivity 
Analysis 

Further Requirements 

Confounding I: Unmeasured Maybe Assumptions involving 
prevalence, strength and 
direction of unmeasured 
confounder 

Confounding II: Residual Maybe Knowledge/assumption of which 
variables are not fully measured 

Selection Bias is not present No (Maybe; Generally not testable 
for most forms of selection bias but 
some exceptions [non-random loss 
to follow-up] may be testable with 
assumptions) 

Assumption or external 
information on source of 
selection bias 

Missing Data No Assumption or external 
information on mechanism for 
missing data 

Data Source Yes Access to additional data sources 
Sub-populations Yes Identifier of sub-population 
Statistical Method Yes None 
Misclassification I: Covariate 
Definitions 

Yes None 

Misclassification II: 
Differential misclassification 

Maybe Assumption or external 
information about mechanism of 
misclassification 

Functional Form Yes None 
 

Statistical Assumptions 
The guidance in this section primarily focuses on studies with a continuous outcome, exposure, 
or confounding factor variable.  Many pharmacoepidemiological studies are conducted within a 
claims database environment where the number of continuous variables is limited (often only age 
is available), and these assumptions do not apply in these settings.  However, studies set in 
electronic medical records or in prospective cohort studies may have a wider range of continuous 
variables, and it is important to ensure that they are modeled correctly.  
 
Covariate and Outcome Distributions 
It is common to enter continuous parameters as linear covariates in a final model (whether that 
model is linear, logistic, or survival).  However, there are many variables where the association 
with the outcome may be better represented as a transformation of the original variable.     
 
A good example of such a variable is net personal income, a variable that is bounded at zero but 
for which there may be a large number of plausible values.  The marginal effect of a dollar of 
income may not be linear across the entire range of observed incomes (an increase of $5,000 
may mean more to individuals with a base income of $10,000 than those with a base income of 
$100,000).  As a result, it can make sense to look at transformations of the data into a more 
meaningful scale.   
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The most common option for transforming a continuous variable is to create categories (e.g., 
quintiles derived from the data set or specific cut points).  This approach has the advantages of 
simplicity and transparency, as well as being relatively non-parametric.  However, unless the cut-
points have clinical meaning, they can make studies difficult to compare to one another (as each 
study may have different cut points).  Furthermore, transforming a continuous variable into a 
discrete form always results in loss of information that it is better to avoid, if possible.  Another 
option is to consider transforming the variable to see if this influences the final results.  The 
precise choice of transformation requires knowledge of the distribution of the covariate.  For 
confounding factors, it can be helpful to test several transformations and to see the impact of the 
reduction in skewness (and whether a linear approximation remains appropriate). 
 

Functional Form 
The “functional form” is the assumed mathematical association between variables in a statistical 
model. There are numerous potential variations in functional form that can be the subject of a 
sensitivity analysis. Examples include the degree of polynomial expressions, splines, or additive 
rather than multiplicative joint effects of covariates in the prediction of both exposures and 
outcomes.  In all of these cases, the “functional form” is the assumed mathematical association 
between variables, and sensitivity analyses can be employed to evaluate the effect of different 
assumptions. In cases where non-linearity is suspected (i.e., a non-linear relationship between a 
dependent and independent variable in a model), it can be useful to test the addition of a square 
term to the model (i.e., the pair of covariates age + age2 as the functional form of the independent 
variable age).  If this check does not influence the estimate of the association, then it is unlikely 
that there is any important degree of non-linearity.  If there is an impact on the estimates for this 
sort of transformation, it can make sense to try a more appropriate model for the non-linear 
variable (such as a spline or a generalized additive model).   
 
Transformations should be used with caution when looking at the primary exposure as they can 
be susceptible to overfit.  Overfit occurs when you are fitting a model to random variations in the 
data (i.e., noise) rather than to the underlying relation; polynomial-based models are susceptible 
to this sort of problem.  However, if one is assessing the association between a drug and an 
outcome, this can be a useful way to handle parameters (like age) that will not be directly used 
for inference but that one wishes to balance between two exposure groups.  These 
transformations should also be considered as possibilities in the creation of a probability of 
treatment model (for a propensity score analysis).     
 

Special Cases 
Another modeling challenge for epidemiologic analysis and interpretation is when there is a 
mixture of informative null values (zeros) and a distribution.  This occurs with variables like 
coronary artery calcium (CAC), which can have values of zero or a number of Agatston units.20  
These distributions are best modeled as two parts: one, as a dichotomous variable to determine 
the presence of absence of CAC; and two, using a model to determine the severity of CAC 
among those with CAC>0.  In the specific case of CAC, the severity model is typically log 
transformed due to extreme skew.Error! Bookmark not defined.  These sorts of distributions are rare, but 
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one should still consider the distribution and functional form of key continuous variables when 
they are available.   
 

Implementations 
There are a number of approaches to conducting sensitivity analyses.  This section describes two 
widely used approaches, spreadsheet-based and code-based analyses, and is not intended to be a 
comprehensive guide to implementing sensitivity analyses.  Other approaches to conducting 
sensitivity analysis exist and may be more useful for specific problems.2   
 

Spreadsheet-Based 
The robustness of a study result to an unmeasured confounding variable can be assessed 
quantitatively using a standard spreadsheet (available at http://www.drugepi.org/dope-
downloads/#Sensitivity Analysis).21  The observed result and ranges of assumptions about an 
unmeasured confounder (prevalence, strength of association with exposure, and strength of 
association with outcome) are entered into the spreadsheet and are used to provide the departure 
from the observed result to be expected if the unmeasured confounding variable could be 
accounted for using standard formulae for confounding.22  Two approaches are available within 
the spreadsheet: 1) an “array” approach; and 2) a “rule out” approach.  In the array approach, an 
array of values (representing the ranges of assumed values for the unmeasured variable) is the 
input for the spreadsheet.  The resulting output is a three dimensional plot that illustrates, 
through a graphed response surface, the observed result for a constellation of assumptions 
(within the input ranges) about the unmeasured confounder.   
 
In the rule out approach, the observed association and characteristics of the unmeasured 
confounder (prevalence and strength of association with both exposure and outcome) are entered 
into the spreadsheet. The resulting output is a two-dimensional graph that plots, given the 
observed association, the ranges of unmeasured confounder characteristics that would result in a 
null finding. In simpler terms, the rule-out approach quantifies, given assumptions, how strong a 
measured confounder would need to be to result in a finding of no association and “rules out” 
whether an unmeasured confounder can explain the observed association. 
 

Statistical Software-Based 
For some of the approaches discussed, the software is available online.  For example, the high 
dimensional propensity score and related documentation is available at 
http://www.hdpharmacoepi.org/download/. For other approaches, like the case-crossover 
design18 the technique is well known and widely available.  Finally, many of the most important 
forms of sensitivity analysis require data management tasks (such as recoding the length of an 
exposure time window) that are straightforward, though time-consuming.   
 

This section describes a few examples of handling slightly more complex functional forms of 
covariates (where the association is not well described by a line or by the log transformation of a 
line).  The first example introduces a spline into a model where the analyst suspects that there 
might be a non-linear association with age (and there is a broad age range in the cohort, making a 

http://www.drugepi.org/dope-downloads/#Sensitivity Analysis
http://www.drugepi.org/dope-downloads/#Sensitivity Analysis
http://www.hdpharmacoepi.org/download/
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linearity assumption suspect).  The second example looks at how to model CAC, which is an 
outcome variable with a complex form.   
 

Example of Functional Form  
This SAS code is an example of a mixed model that is being used to model the trajectory of a 
biomarker over time (variable = years), conditional on a number of covariates.  The example 
estimates the association between different statin medications with this biomarker.  Like in many 
prescription claims databases, most of the covariates are dichotomous.  However, there is a 
concern that age may not be linearly associated with outcome, so a version of the analysis is tried 
in which a spline is used in place of a standard age variable.  
 
Original Analysis (SAS 9.2): 
 
proc glimmix data=MY_DATA_SET; 
class patientid; 
model biomarker_value =age female years statinA statinB diabetes hypertension / s cl; 
random intercept years/subject=patientid; 
run; 
 
Sensitivity Analysis: 
 
proc glimmix data=MY_DATA_SET; 
class patientid; 
effect spl = spline(age); 
model biomarker_value =spl female years statinA statinB diabetes hypertension / s cl; 
random intercept years/subject=patientid; 
run; 
 
While the spline version of the age variable needs to be graphically interpreted, it should handle 
any non-linear association between age and the biomarker of interest.   
 
Example of Two-Stage Models for Coronary Artery Calcium (CAC)  
CAC is an example of a continuous variable with an extremely complex form.  The examples of 
two-stage CAC modeling (below) use variables from the Multi-Ethnic Study of Atherosclerosis. 
Here, the example is testing whether different forms of non-steroidal anti-inflammatory drugs 
(below as asa1c, nsaid1c, cox21c) are associated with more or less calcification of the arteries.  
The model needs to be done in two stages as it is thought that the covariates that predict the 
initiation of calcification may differ from those that predict how quickly calcification progresses 
once the process has begun.Error! Bookmark not defined.  
 
First, a model is developed for the relative risk of having a CAC score greater than zero (i.e., that 
there is at least some evidence of plaques looking at a CT scan of the participant’s coronary 
arteries).  The variable for CAC is cac (1=CAC present, 0=CAC not present).  The repeated 
statement is used to invoke robust confidence intervals (as there is only one subject for each 
unique participant ID number, designated as the variable idno).   
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SAS 9.2 code example: 
 
proc genmod data = b descending; 
 class idno race1; 
 model cac=age1c male bmi1c race1 
     male  diabetes smoker ex_smoker  sbp1c dbp1c 
   hdl1 ldl1 TRIG1STTN1C  asa1c nsaid1c cox21c 
   / dist = poisson link = log;  
 repeated subject = idno/ type =ind; 
estimate 'asa1c' asa1c 1 -1/ exp; 
estimate 'nsaid1c' nsaid1c 1 -1/ exp; 
estimate 'cox21c' cox21c 1 -1/ exp;; 
run; 
 
Among those participants with CAC (as measured by an Agatston score, agatpm1c), greater than 
zero, the amount present is then modeled.  As this variable is highly skewed, the amount of CAC 
present is transformed using a log transformation.   
 
SAS 9.2 code example: 
 
proc genmod data = b descending; 
class idno race1; 
where  agatpm1c ne 0;  
model  log_transformed_CAC=age1c male bmi1c race1 
     male  diabetes smoker ex_smoker  sbp1c dbp1c 
   hdl1 ldl1 TRIG1STTN1C asa1c nsaid1c cox21c; 
 repeated subject = idno/ type = unstr; 
run;  
 
The modeling of CAC is a good example of one of the more complicated continuous variables 
that can be encountered in CER.Error! Bookmark not defined.  To properly model this association, two 
models were needed (and the second model required transformation of the exposure).  Most 
comparative effectiveness projects will involve much simpler outcome variables, and the analyst 
should be careful to only include more complex models where there is an important scientific 
rationale.   
 

Presentation 
Often sensitivity analyses conducted for a specific CER study can simply be summarized in the 
text of the paper, especially if the number of scenarios is small.17  In other cases, where a broad 
range of scenarios are tested,2 it may be more informative to display analyses in tabular or 
graphical form.   
 

Tabular 
The classic approach to presenting sensitivity analysis results is in a table.  There, the author can 
look at the results of different assumptions and/or population sub-groups.  Tables are usually 
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preferred in cases where there is minimal information being presented, as they allow the reader 
to very precisely determine the influence of changes in assumptions on the reported associations.  
This is the approach used by Samy Suissa14 to show differences in results based on different 
approaches to analyzing a cohort of lung cancer patients.   
 

Graphical 
One reason to use graphical methods is where the variable being modeled is, itself, a continuous 
variable, and presenting the full plot is more informative than forcing a categorization scheme on 
the data.  One example, from Robyn McClelland and colleagues (Figure 11.1),23 is a sensitivity 
analysis to see if the form in which alcohol is consumed changes its association with levels of 
CAC.  The analyst, therefore, plots the association with total alcohol consumed overall and by 
type of alcohol (beer, wine, hard alcohol).  Here, both the exposure and the outcome are 
continuous variables, and so it is much easier to present the results of the sensitivity analysis as a 
series of plots.   
 
Figure 11.1.  Smoothed plot of alcohol consumption versus annualized progression of CAC 
with 95% CIs 

 
 
See McClelland RL, Bild DE, Burke GL, et al. Alcohol and coronary artery calcium prevalence, incidence, and 
progression: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2008 Dec;88(6):1593-
601.  This figure is copyrighted by the American Society for Nutrition and reprinted with permission. 
 
Another reason for a graphical display is to present the conditions that a confounder would need 
to meet in order to be able to explain an association.  As discussed, the strength of a confounder 
depends on its association with the exposure, the outcome, and its prevalence in the population.  
Using the standard spreadsheet discussed earlier,20 these conditions can be represented as a plot.  
For example, Figure 11.2 presents a plot based on data from Psaty et al.1,24 
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Figure 11.2. Plot to assess the strength of unmeasured confounding necessary to explain an 
observed association 

                          
 
Figure 11.2 plots the combination of the odds ratio between the exposure and the confounder 
(OREC) and the relative risk between the confounder and the outcome (RRCD) that would be 
required to explain an observed association between the exposure and the outcome by 
confounding alone.  There are two levels of association considered (ARR=1.57 and ARR=1.3) 
and a separate line plotted for each.  These sorts of displays can help illustrate the strength of 
unmeasured confounding that is required to explain observed associations, which can make the 
process of identifying possible candidate confounders easier (as one can reference other studies 
from other populations in order to assess the plausibility of the assumed strength of association). 
Other tools for sensitivity analysis are available, such as the one from Lash et al. 
(http://sites.google.com/site/biasanalysis/).10 
 

Conclusion 
While sensitivity analyses are important, it is necessary to balance the concise reporting of study 
results with the benefits of including of the results of numerous sensitivity analyses.  In general, 
one should highlight sensitivity analyses that result in important changes or that show that an 
analysis is robust to changes in assumptions.  Furthermore, one should ensure that the number of 
analyses presented is appropriate for illustrating how the model responds to these changes.  For 
example, if looking at the sensitivity of results to changes in the exposure time window, consider 
looking at 30, 60, and 90 days instead of 15, 30, 45, 60, 75, 90, 105, and 120 days, unless the 
latter list directly illustrates an important property of the statistical model.  The decision as to 
what are the most important sensitivity analyses to run will always be inherently specific to the 
problem under study.  For example, a comparative effectiveness study of two devices might not 
be amenable to variations in exposure window definitions, but might be a perfect case for a 
physician preference instrumental variable.  This chapter highlights the most common elements 
for consideration in sensitivity analysis, but some degree of judgment as to the prioritization of 
these analyses for presentation is required.  Still as a general guideline, the analyst should be able 
to answer three questions: 
 

• Is the association robust to changes in exposure definition, outcome definition, and the 
functional form of these variables?  

http://sites.google.com/site/biasanalysis/
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• How strong would an unmeasured confounder have to be to explain the magnitude of the 
difference between two treatments? 

• Does the choice of statistical method influence the directionality or strength of the 
association?   

 
A plan for including some key sensitivity analysis in developing study protocols and analysis 
plans should be formed with a clear awareness of the limitations of the data and the nature of the 
problem.  The plan should be able to answer these three basic questions and should be a key 
feature of any comparative effectiveness analysis.  The use of sensitivity analysis to examine the 
underlying assumptions in the analysis process will build confidence as to the robustness of 
associations to assumptions and be a crucial component of grading the strength of evidence 
provided by a study.  
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Checklist: Guidance and Key Considerations for Sensitivity Analyses in an Observational CER protocol or proposal 
Guidance Key Considerations Check 

Propose and describe planned sensitivity 
analyses  
 

- Consider the effect of changing exposure, outcome, 
confounder, or covariate definitions or classifications 

- Assess expected impact of unmeasured confounders on 
key measures of association 
 

 

Describe important subpopulations in which 
measures of effect will be assessed for 
homogeneity 
 

- Consider pediatric, racial/ethnic subgroups, patients with 
complex disease states 

- Consider inclusion of AHRQ Priority Populations 
(http://www.ahrq.gov/populations/)  

 

State modeling assumptions and how they 
will be tested 
 

 
 

Indicate whether the study will be replicated 
in other databases, if available and feasible 
 

 
 

 

http://www.ahrq.gov/populations/
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