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Chapter 7. Covariate Selection 

Abstract 
This chapter addresses strategies for selecting variables for adjustment in non-experimental 
comparative effectiveness research (CER), and uses causal graphs to illustrate the causal network 
relating treatment to outcome.  While selection approaches should be based on an understanding 
of the causal network representing the common cause pathways between treatment and outcome, 
the true causal network is rarely known.  Therefore, more practical variable selection approaches 
based on background knowledge when the causal structure is only partially known are described.   
These approaches include adjustment for all observed pretreatment variables thought to have 
some connection to the outcome, all known risk factors for the outcome, and all direct causes of 
the treatment or the outcome.  Empirical approaches, such as forward and backward selection 
and automatic high-dimensional proxy adjustment are also discussed.  As there is a continuum 
between knowing and not knowing the causal, structural relations of variables, a practical 
approach to variable selection involving a combination of background knowledge and empirical 
selection using the high-dimensional approach is recommended.  The empirical approach could 
be used to select from a set of a priori variables based on the researcher’s knowledge and will 
ultimately select those to be included in the analysis.  This more limited use of empirically-
derived variables may reduce confounding while simultaneously reducing the risk of including 
variables that could increase bias.  

Introduction 
Non-experimental studies that compare the effectiveness of treatments are often strongly affected 
by confounding.  Confounding occurs when patients with a higher risk of experiencing the 
outcome are more likely to receive one treatment over another.  For example, consider two drugs 
used to treat hypertension – calcium channel blockers (CCB) and diuretics.  Since CCBs are 
perceived by many clinicians as being particularly useful in treating high-risk patients with 
hypertension, patients with a higher risk for experiencing cardiovascular events are more likely 
to be channeled into the CCB group, thus confounding the relation between antihypertensive 
treatment and the clinical outcomes of cardiovascular events.1  The difference in treatment 
groups is a result of the differing baseline risk for the outcome and the treatment effects (if any).  
Any attempt to compare the causal effects of CCBs and diuretics on cardiovascular events would 
require taking patients’ underlying risk for cardiovascular events into account through some form 
of covariate adjustment.  The use of statistical methods to make the two treatment groups similar 
with respect to measured confounders is sometimes called statistical adjustment, control, or 
conditioning.  
 
The purpose of this chapter is to address the complex issue of selecting variables for adjustment 
in order to compare the causative effects of treatments.  The reader should note that the 
recommended variable selection strategies discussed are for non-experimental causal models and 
not prediction or classification models, for which approaches may differ.  Recommendations for 
variable selection in this chapter focus primarily on fixed treatment comparisons when 
employing the so-called “incident user design”, which is detailed in Chapter 2: Study Design 
Considerations for Observational CER.   
 
This chapter contains three sections.  In Section 1, we explain causal graphs and the structural 
relations of variables.  In Section 2, we discuss proxy, mismeasured, and unmeasured variables.  
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Section 3 presents variable selection approaches based on full and partial knowledge of the data 
generating process as represented in causal graphs.  We also discuss approaches to selecting 
covariates from a high-dimensional set of variables based on statistical association, and how 
these approaches may be used to complement variable selection based on background 
knowledge.  Ideally, when information is available, causal graph theory would be used to 
complement any variable selection technique.  We provide a separate supplement (Supplement 
2) on Directed Acyclic Graphs for the more advanced reader.  
 

Causal Models and the Structural Relationship of Variables 
This section introduces notation to illustrate basic concepts.  Causal graphs are used to represent 
relationships among variables and to illustrate situations that generate bias and confounding. 
 
Treatment Effects 
The goal of comparative effectiveness research (CER) is to determine if a treatment is more 
effective or safer than another.  Treatments should be “well-defined” as described in Chapter 4: 
Characterizing and Operationalizing Exposure in Observational CER, and represent manipulable 
units, e.g., drug treatments, guidelines, and devices.  Causal graphs are often used to illustrate 
relationships among variables that lead to confounding and other types of bias.  The simple 
causal graph in Figure 7.1 indicates a randomized trial in which no unmeasured or measured 
variables influence treatment assignment where A0 is the assigned treatment at baseline (time 0) 
and Y1 is the outcome after follow-up (time 1).  The arrow connecting treatment assignment (A0) 
to the outcome (Y1) indicates that treatment has a causal effect on the outcome.  Causal graphs 
are used to represent the investigator’s beliefs about the mechanisms that generated the data.  
Knowledge of the causal structure that generates the data allows the investigator to better 
interpret statistical associations observed in the data.  

 
 
Risk Factors 
We now let C0 be one or more baseline covariates measured at time 0.  Covariates that are 
predictive of the outcome but having no influence on treatment status are often referred to as 
pure risk factors, depicted in Figure 7.2.  Conditioning on such risk factors is unnecessary to 
remove bias but can result in efficiency gains in estimation2,3 and does not induce bias in 
regression or propensity score models.4  Researchers need to be careful not to include variables 
affected by the outcome, as adjustment for such variables can increase bias.2  We recommend 
including risk factors in statistical models to increase the efficiency/precision of an estimated 
treatment effect without increasing bias.4  
 

 

Figure 7.2. Causal graph illustrating a 
baseline risk factor (C0) for the outcome (Y1). 

Figure 7.1. Causal graph illustrating a 
randomized trial where assigned treatment 
(A0) has a causal effect on the outcome (Y1). 
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Confounding 
The central threat to the validity of non-experimental CER is confounding.  Due to the ways in 
which providers and patients choose treatments, the treatment groups may not have similar 
underlying risk for the outcome.  Confounding is often illustrated as a common cause pathway 
between the treatment and outcome.  Measured variables that influence treatment assignment, are 
predictive of the outcome, and remove confounding when adjusted for, are often called 
confounders.  Unmeasured variables on a common cause pathway between treatment and 
outcome are referred to as unmeasured confounders.   For example, in Figure 7.3 unmeasured 
variables U1 and U2 are causes of treatment assignment and outcome.  In general, sources of 
confounding in observational comparative effectiveness studies include provider actions, patient 
actions, and social and environmental factors.  Unmeasured variable U1 has a measured 
confounder C0 that is a proxy for U1, such that conditioning on C0 removes confounding by U1, 
while the unmeasured variable U2 does not.  

 
 
 
 
 
Provider Actions 
Confounding by indication: Confounding by indication, also referred to as “channeling bias,” is 
common and often difficult to control in comparative effectiveness studies.5 -9  Prescribers choose 
treatments for patients who they believe are most likely to benefit or least likely to be harmed.  
In a now historic example, Huse et al. surveyed United States physicians about their use of 
various classes of antihypertensive medications and found that physicians were more likely to 
prescribe CCBs to high-risk patients than for uncomplicated hypertension.1  Any attempt to 
compare the safety or effectiveness between CCBs and other classes of antihypertensive 
medication would need to adequately account for the selective use of CCBs for higher risk 
patients.  If underlying disease severity and prognosis are not precisely measured and correctly 
modeled, CCBs would appear more harmful or less effective simply because higher risk patients 
are more likely to receive CCBs.  Variables measuring risk for the outcome being investigated 
need to be adequately measured and modeled to address confounding by indication. 
 
Selective treatment and treatment discontinuation of preventive therapy in frail and very sick 
patients: Patients who are perceived by a physician to be close to death or who face serious 
medical problems may be less likely to receive preventative therapies.  Similarly, preventative 
treatment may be discontinued when health deteriorates.  This may explain the substantially 
decreased mortality observed among elderly users of statins and other preventive medications 
compared with apparently similar non-users.10,11  Even though concerns with discontinuation of 
therapy may be addressed using time-varying measures of treatment, this type of selective 
discontinuation presents problems when analyzing fixed treatments.  For example, when 

Figure 7.3. A causal graph illustrating 
confounding from the unmeasured variable 
U2. Conditioning on the measured variable 
(C0), as indicated by the box around the 
variable, removes confounding from U1. 
Measured confounders are often proxies for 
unmeasurable constructs. For example, 
family history of heart disease is a measured 
variable indicating someone’s risk for 
cardiovascular disease (U1). 
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conducting database studies, data are extracted and analyzed based on the specified study period.  
The frailer elderly who discontinued treatment prior to the study window would appear to have 
never received treatment. 
 
Patients with certain chronic diseases or patients who take many medications may also have a 
lower probability of being prescribed a potentially beneficial medication due to concerns 
regarding drug-drug interactions or metabolic problems.8  For example, patients with end-stage 
renal disease are less likely to receive medications for secondary prevention after myocardial 
infarction.12  Additionally, in a study assessing the potential for bias in observational studies 
evaluating use of lipid-lowering agents and mortality risk, the authors found evidence of bias due 
to an association between non-cardiovascular comorbidities and the likelihood of treatment.11  
Due to these findings, researchers have recommended statin use and other chronic therapies as 
markers for health status in their causal models.11,13 
 
Patient Actions 
Healthy User/Adherer Bias: Patients who initiate a preventive therapy may be more likely than 
other patients to engage in other healthy, prevention-oriented behaviors.  Patients who start a 
preventive medication may have a disposition that makes them more likely to seek out 
preventive healthcare services, exercise regularly, moderate their alcohol consumption, and 
avoid unsafe and unhealthy activities.14  Incomplete adjustment for such behaviors representative 
of specific personality traits can make preventative medications spuriously or more strongly 
associated with reduced risk of a wide range of adverse health outcomes.   
 
Similar to patients who initiate preventive medications, patients who adhere to treatment may 
also engage in more healthy behaviors.14,15  Strong evidence of this “healthy adherer” effect 
comes from a meta-analysis of randomized controlled trials where good adherence to placebo 
was found to be associated with mortality benefits and other positive health outcomes.16  The 
benefit can be explained by healthy behaviors of the patients who use the medication as 
prescribed rather than placebo effects. Treatment adherence is an intermediate variable between 
treatment assignment and health outcomes.  Any attempt to evaluate the effectiveness of 
treatment rather than the effect of assigned treatment would require time-varying treatment 
analysis where subjects are censored when treatment is discontinued.  Proper adjustment for 
predictors of treatment discontinuation is required to resolve the selection bias that occurs when 
conditioning on patients who adhered to assigned treatment.17,18 
 
Physician assessment that patients are functionally impaired (defined as having difficulty 
performing activities of daily living) may also influence their treatment assignment and health 
outcomes.  Functionally impaired patients may be less able to visit a physician or pharmacy; 
therefore such patients may be less likely to collect prescriptions and receive preventive 
healthcare services.8  This phenomenon could exaggerate the benefit of prescription medications, 
vaccines, and screening tests.8  
 
Environmental and Social Factors 
Access to healthcare: Within large populations analyzed in multiuse healthcare databases, 
patients may vary substantially in their ability to access healthcare.  Patients living in rural areas, 
for example, may have to drive long distances to receive specialized care.8  Other patients face 
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different obstacles to accessing healthcare such as cultural factors (e.g., trust in medical system), 
economic factors (e.g., ability to pay), and institutional factors (e.g., prior authorization 
programs, restrictive formularies), all of which may have some direct or indirect relation to 
treatment and study outcomes.8  
 
Intermediate Variables 
An intermediate variable is generally thought of as a post-treatment variable influenced by 
treatment that may or may not lie on the causal pathway between the treatment and the outcome.  
Figures 7.4 and 7.5 illustrate variables affected by treatment.  In Figure 7.4, C0 is a baseline 
confounder and must be adjusted for but a subsequent measurement of the variable at a later time 
(C1) is on the causal pathway between treatment and outcome.  For example, consider the study 
previously described comparing classes of antihypertensive medications (A0) on the risk for 
cardiovascular events (Y1).  The baseline measure of blood pressure is represented by C0.  Blood 
pressure measured after treatment is initiated with adequate time to reach therapeutic 
effectiveness and before the outcome assessment is considered an intermediate variable and 
represented by C1 in Figure 7.4.  When the goal of CER is to estimate the total causal effect of 
the treatment on the outcome, adjustment for variables on the causal pathway between treatment 
and outcome, such as blood pressure after treatment is initiated (C1), is unnecessary and likely to 
induce bias2 toward a relative risk of 1.0, though the direction can sometimes be in the opposite 
direction.  The magnitude of bias is greatest if the primary mechanism of action is through the 
intermediate pathway.  Thus, it would be incorrect to adjust for blood pressure measured after 
the treatment was initiated (C1), because most of the medication’s effects on cardiovascular 
disease are mediated through improvements in blood pressure.  This kind of over-adjustment 
would mask the antihypertensive effect of the treatment A0.   
 
Pharmacoepidemiological studies that do not restrict analyses to incident episodes of treatments 
are subject to this type of over-adjustment.  Measurement of clinical covariates, such as blood 
pressure, at the time of registry enrollment is an example of an established medication user 
where baseline measurement is unobtainable.  The clinical variables for established users at the 
time of enrollment have already been influenced by investigational treatments and are considered 
intermediate variables rather than baseline confounders.  The ability to adequately adjust for 
baseline confounders and not intermediate variables is one reason the new user design described 
in Chapter 2 is so highly valued. 
 

 
   
 
 
 
Investigators are sometimes interested in separating total causal effects into direct and indirect 
effects.  In mediation analysis, the investigator intentionally measures and adjusts intermediate 

Figure 7.4. A causal graph representing 
an intermediate causal pathway. Blood 
pressure after treatment initiation (C1) is 
on the causal pathway between 
antihypertensive treatment (A0) and 
cardiovascular events (Y1). Baseline 
blood pressure (C0) is a measured 
confounder of disease severity (U1) and 
the box around the variable represents 
adjustment. 
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variables to estimate direct and indirect effects.  Mediation analysis requires a stronger set of 
identifiability assumptions and is discussed in the following references.19 -33  
 
When conditioning on an intermediate, biases can also arise for “direct effects” if the 
intermediate is a common effect of the exposure and an unmeasured variable that influences the 
outcome as in Figure 7.5.  The “birth-weight paradox” is one of the better-known clinical 
examples of this phenomenon.27,32,34  Maternal smoking seems to have a protective effect on 
infant mortality in infants with the lowest birth-weight.  The seemingly protective effect of 
maternal smoking is a predictable association produced from conditioning on an intermediate 
without adequate control for confounding between the low birth-weight (intermediate) and infant 
mortality (outcome).  This is illustrated in Figure 7.5.  The problem of conditioning on a 
common effect of two variables will be further discussed below in the section on colliders. 

 
 
 
 
 
Time-varying Confounding 
The intention-to-treat analogue of a randomized trial, where subjects are assigned to the 
treatment they are first exposed to regardless of discontinuation or switching treatments, may not 
be the optimal design for all non-experimental CER.  Researchers interested in comparing 
adverse effects of medications that are thought to only occur in proximity to using the 
medication may, for example, want to censor subjects who discontinue treatment.  This type of 
design is described as a ‘per protocol’ analysis.  An ‘as treated’ analysis allows subjects to 
switch treatment groups based on their use of treatment.  Both the ‘as treated’ and ‘per protocol’ 
analysis can be used to evaluate time-varying treatment.  
 
In a non-experimental setting, time-vary treatments are expected to have time-varying 
confounders.  For example, if we were interested in comparing cardiovascular events between 
subjects who were completely adherent to CCBs versus completely adherent to diuretics, then we 
may consider a time-varying treatment design where subjects are censored when they 
discontinue the treatment they were first assigned.  If joint predictors of compliance and the 
outcome are present, then some sort of adjustment for the time-varying predictors must be made.  
Standard adjustment methods may not produce unbiased effects when the predictors of 
adherence and the outcome are affected by prior adherence, and a newer class of causal effect 
estimators, such as inverse-probability of treatment weights or g-estimation, may be 
warranted.18,35  
 

Figure 7.5. A causal diagram illustrating the 
problem of adjustment for the intermediate 
variable, low birth-weight (M1), when 
evaluating the causal effect of maternal 
smoking (A0) on infant mortality (Y1) after 
adjustment for measured baseline 
confounders (C0) between exposure and 
outcome. Confounding at the intermediate 
and outcome, birth defects (U1), remains 
unmeasured. 
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Collider Variables 
Colliders are the result of two independent causes having a common effect.  When we include a 
common effect of two independent causes in our statistical model, the previously independent 
causes become associated thus opening a backdoor path between the treatment and outcome.  
This phenomenon can be explained intuitively if we think of two causes (sprinklers being on or it 
is raining) of a lawn being wet.  If we know the lawn is wet and we know the value of one of the 
other variables (it is not raining) then we can predict the value of the other variable (the sprinkler 
must be on).  Therefore, conditioning on a common effect induces an association between two 
previously independent causes, i.e., sprinklers being on and rain.  
 
Bias resulting from conditioning on a collider when attempting to remove confounding by 
covariate adjustment is referred to as M-collider bias.36  Pure pretreatment M-type structures that 
statistically behave like confounders may be rare; nevertheless, any time we condition on a 
variable that is not a direct cause of either the treatment or outcome but merely associated with 
the two, we have the potential to introduce M-bias.37  
 
A hypothetical example of how two independent variables can become conditionally associated 
and increase bias follows.  Consider a highly simplified hypothetical study to compare rates of 
acute liver failure between new users of CCB and diuretics using administrative data from a 
distributed network of managed care organizations.  As illustrated in Figure 7.7, if some of the 
managed care organizations had a formulary policy (U1) that caused a lower proportion of 
patients to be initiated on a CCB (A0), and that same policy reduced the chance of receiving 
medical treatment for erectile dysfunction (F0) and patients with a long history of unmeasured 
alcohol abuse (U2) are more likely to receive treatment for erectile dysfunction (F0), then 
adjustment for erectile dysfunction treatment may introduce bias by generating an association 
and opening a backdoor path that did not previously exist between formulary policy (U1) and 
alcohol abuse (U2).  
 
 

 
 
 

Figure 7.6. A simplified causal graph 
illustrating adherence to initial 
antihypertensive therapy as a time-
varying treatment (A0, A1), joint 
predictors of treatment adherence and 
the outcome (C0, C1). The 
unmeasured variable (U1) indicates 
this is a non-experimental study. 

Figure 7.7. Hypothetical causal diagram illustrating 
M-type collider stratification bias. Formulary policy 
(U1) influences treatment with CCB (A0) and 
treatment for erectile dysfunction (F0).  Unmeasured 
alcohol use (U2) influences impotence and erectile 
dysfunction treatment (F0) and acute liver disease 
(Y1). In this example there is no effect of 
antihypertensive treatment on liver disease, but 
antihypertensive treatment and liver disease would be 
associated when adjusting for medical treatment of 
erectile dysfunction. The box around F0, represents 
adjustment and the conditional relationship is 
represented by the dotted arrow connecting U1 and 
U2. 
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Although conditioning on a common effect of two variables can induce an association between 
two otherwise independent variables, we currently lack many compelling examples of pure M-
bias for pretreatment covariates.  Such structures do, however, arise more commonly in the 
analysis of social network data.38  Compelling examples of collider stratification bias (i.e., 
selection bias) do exist when conditioning on variables affected by treatment (as illustrated in 
Figure 7.5).  Collider stratification bias can give rise to other biases in case-control studies and 
studies with time-varying treatments and confounding.39  
 
Instrumental Variables 
An instrumental variable is a pretreatment variable that is a cause of treatment but has no causal 
association with the outcome other than through its effect on treatment such as Z0 in Figure 7.8.  
When treatment has an effect on the outcome, an instrumental variable will be associated with 
treatment and the outcome, and can thus statistically appear to be a confounder.  An instrumental 
variable will also be associated with the outcome even when conditioning on the treatment 
variable whenever there is an unmeasured common cause of the treatment on the outcome.  It has 
been established that inclusion of variables strongly associated with treatment (A0) but not 
independently associated with the outcome (Y1) in statistical models will increase the standard 
error and decrease the precision of the treatment effect.2,4,40,41  It is less well known, however, 
that the inclusion of such instrumental variables into statistical models intended to remove 
confounding can increase the bias of an estimated treatment effect.  The bias produced by the 
inclusion of such variables has been termed “Z-bias” as Z is often used to denote an instrumental 
variable.8  
 
Z-bias arises when the variable set is insufficient to remove all confounding, and for this reason 
Z-bias has been described as bias-amplification.42,43  Figure 7.8 illustrates a data generating 
process where unmeasured confounding exists along with an instrumental variable.  In this 
situation, the variation in treatment (A0) can be partitioned into 3 components: the variation 
explained by the instrument (Z0), the variation explained by U1 and the unexplained variation.  
The magnitude of unmeasured confounding is determined by the proportion of variation 
explained by U1, along with the association between U1 and Y1.  When Z0 is statistically 
adjusted, one source of variation in A0 is removed making the variation explained by U1 a larger 
proportion of the remaining variation.  This is what amplifies the residual confounding bias.44  
 

 
 

Figure 7.8. Bias is amplified (Z-bias) 
when an instrumental variable (Z0) is 
added to a model with unmeasured 
confounders (U1). 
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Any plausible instrumental variable can potentially introduce Z-bias in the presence of 
uncontrolled confounding.  Indication for treatment was found to be a strong instrument 45 and 
provider and ecologic causes of variation in treatment choice have been proposed as potential 
instrumental variables that may amplify bias in non-experimental CER.8  
 
A simulation study evaluating the impact of adjusting instruments of varying strength when in 
the presence of uncontrolled confounding demonstrated that the impact of adjusting instrumental 
variables was small in certain situations, which lead the authors to suggest that over-adjustment 
is less of a concern than under-adjustment.  Analytic formulae, on the other hand, indicate that 
this bias may be quite large, especially when dealing with multiple instruments.42  We have 
discussed bias amplification due to adjusting for instrumental variables.  The use of instrumental 
variables, however, can be employed as an alternative strategy to deal with unmeasured 
confounding.46  This strategy is discussed in detail in Chapter 10: Considerations for Statistical 
Analysis in Non-Experimental CER.  
 
We have presented multiple types of variable structures, with a focus on variables that either 
remove or increase bias when adjusted.  The dilemma is that many of these variable types 
statistically behave like confounders, which are the only structural type needing adjustment to 
estimate the average causal effect of treatment.47,48  For this reason, researchers should be 
hesitant to rely on statistical associations alone to select variables for adjustment.  The variable 
structure must be considered when attempting to remove bias through statistical adjustment.   

Proxy Confounders, Mismeasured and Unmeasured Confounders 
It is not uncommon for a researcher to be aware of an important confounding variable and to lack 
data on that variable.  A measured proxy can sometimes stand in for an unmeasured confounder.  
For example, use of oxygen canisters could be a proxy for failing health and functional 
impairment and use of preventive services, such as flu shot, is sometime thought to serve as a 
proxy for healthy behavior and treatment adherence.  Likewise, important confounders 
sometimes are measured with error.  For example, self-reported body mass index will often be 
subject to underreporting.   
 
Researchers routinely adjust analyses using proxy confounders and mismeasured confounders.  
Adjusting for a proxy or mismeasured confounder will reduce bias relative to the unadjusted 
estimate provided the effect of the confounder on the treatment and the outcome are 
“monotonic.”48  In other words, any increase in the confounder should on average always affect 
treatment in the same direction, and should always affect the outcome in the same direction for 
both the treated and untreated groups.  If an increase in the confounder increased the outcome for 
the treated group and decreased the outcome for the untreated group, then adjustment for the 
proxy or mismeasured confounder can potentially increase bias.  Unfortunately, there are cases, 
even when the measurement error of the confounder is non-differential (does not depend on 
treatment or outcome) that adjustment for proxy or mismeasured confounders can increase, 
rather than decrease, bias.49  

 
Another common problem in trying to estimate causal effects is that of unmeasured confounding. 
Sensitivity analysis techniques have been developed to address misclassified and unmeasured 
confounding.  The reader is referred to Chapter 11: Sensitivity Analysis for Observational CER 
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for further discussion of sensitivity analyses. 

Selection of Variables to Control Confounding  
We present two general approaches to selecting variables to control confounding in non-
experimental CER.  The first approach selects variables based on background knowledge about 
the relationship of the variable to treatment and outcome and the second approach relies 
primarily on statistical associations to select variables for control of confounding and can be 
described as high dimensional automatic variable selection techniques.  The use of background 
knowledge and causal graph theory is strongly recommended when there is sufficient knowledge 
of the causal structure of the variables.  Sufficient knowledge, however, is likely rare when 
conducting studies across a wide geography and many providers and institutions.  For this 
reason, we also present practical approaches to variable selection that empirically select variables 
based on statistical associations. 
 
Variable selection based on background knowledge 
Causal Graph Theory: Assuming a well-defined fixed treatment employing an intention-to-treat 
paradigm and no set of covariates predicts treatment assignment with 100% accuracy, control of 
confounding is all that is needed to estimate causal effects with non-experimental data.47,48  The 
problem, as described above, is that colliders, intermediate variables, and instruments can all 
statistically behave like confounders.  For this reason, an understanding of the causal structure of 
variables is required to separate confounders from other potential bias-inducing variables.  This 
dilemma has led many influential epidemiologists to take a strong position for selecting variables 
for control based on background knowledge of the causal structure connecting treatment to 
outcome.50 -54 
 
When sufficient knowledge is available to construct a causal graph, analyzing the structural basis 
for evaluating confounding is the most robust approach to selecting variables for adjustment.  
The goal is to use the graph to identify a sufficient set of variables to achieve unconfoundedness, 
sometimes also called conditional exchangeability.24,55  The researchers specify background 
causal assumptions using causal graph criteria (see Supplement 2).  If the graph is correct then it 
can be used to identify a sufficient set of covariates (C) for estimating an effect of treatment (A0) 
on the outcome (Y1).  A sufficient set C is observed when no variable in C is a descendant of A0 
and C blocks every open path between A0 and Y1 that contains an arrow into A0.  Control of 
confounding using graphical criteria is usually described as the “back-door” criteria, the idea 
being that variables that influence treatment assignment, i.e., variables that have arrows pointing 
to treatment assignment, provide a back-door path between the A0 and Y1.  It is the open back-
door pathways that generate dependencies between A0 and Y1 and can produce spurious 
associations when no causal effect of A0 on Y1 is present and alter the magnitude of the 
association when A0 causally affects Y1. 
 
Although it is quite technical, causal graph theory has formalized the theoretical justification for 
variable selection, added precision to our understanding of bias due to under and over 
adjustment, and unveiled problems with historical notions of statistical confounding.  The main 
limitation of causal graph theory is that it presumes that the causal network is known and that the 
only unknown is the magnitude of the causal contrast between A0 and Y1 being examined.  In 
practice, where observational studies include large multi-use databases spanning vast geographic 
regions, such complete knowledge of causal networks is unlikely.56,57  
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Since we rarely know the true causal network that represents all common cause pathways 
between treatment and outcome, investigators have proposed more practical variable selection 
approaches based on background knowledge when the causal structure is only partially known.  
These strategies include adjusting for all observed pretreatment variables thought to have some 
connection to the outcome58, all known risk factors for the outcome 4,44,59, and all direct causes 
of the treatment or the outcome.57  The benefits and limitations to each approach to remove 
confounding are briefly discussed. 
 
Adjustment for all observed pretreatment covariates: Emphasis is often placed on the treatment 
assignment mechanism and on trying to reconstruct the hypothetical broken randomized 
experiment that led to the observational data.58  Propensity score methods are often employed for 
this purpose and are discussed in Chapter 10; they can be used in healthcare epidemiology to 
statistically control large numbers of variables when outcomes are infrequent.60,61  Propensity 
scores are the probability of receiving treatment given the set of observed covariates.  The 
probability of treatment is estimated conditional on a set of covariates and the predicted 
probability is then used as a balancing score or matching variable across treatment groups to 
estimate the treatment effect.   
 
The importance is often placed on balancing all pretreatment covariates.  However, when 
attempts are made to balance all pretreatment covariates, regardless of their structural form, 
biases, e.g., from including strong instruments and colliders, can result37,57,62, though, as noted 
above, in practice, pretreatment colliders are likely rarer than ordinary confounding variables. 
 
Adjustment for all possible risk factors for the outcome: Confounding pathways require common 
cause structures between the outcome and treatment.  A common strategy for removing 
confounding without incidentally including strong instruments and colliders is to only include 
variables thought to be direct causes of the outcome, i.e., risk factors, in propensity score 
models.4,59,63  This approach only requires background knowledge of causes of the outcome and 
does not require an understanding of the treatment assignment mechanism or how variables that 
influence treatment are related to risk factors for the outcome.  This strategy, however, may fail 
to include measured variables that predict treatment assignment but have an unmeasured ancestor 
that is an outcome risk factor (A0←C0←U1→Y1) as illustrated in Figure 3.57  
 
Disjunctive cause criterion: The main practical use of causal graphs is to avoid inconsistencies 
between beliefs and data analysis by not adjusting for known instruments and colliders.51  Thus, 
in practice, one only needs to partly know the causal structure of variables relating treatment to 
the outcome.  The disjunctive cause criterion is a formal statement of the conditions in which 
variable selection based on partial knowledge of the causal structure can remove confounding.57  
It states that all observed variables that are a cause of treatment, or a cause of outcome, or a 
cause of both should be included for statistical adjustment.  When any subset of observed 
variables is sufficient to control confounding, the set obtained by applying the disjunctive cause 
criteria will also constitute a sufficient set.  This approach requires more knowledge of the 
variables’ relationship to the treatment and outcome than the other approaches based on 
background knowledge.  The approach performs well when a sufficient set of variables is 
measured, but presents problems when unmeasured confounding remains.  The problem is the 
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same as with Z-bias induced by incorrect use of instrumental variables: conditioning on an 
instrument can amplify the bias due to unmeasured confounding.  
 
Whenever there exists some set of observed variables that block all backdoor paths (even if the 
researcher does not know which subset this is), the disjunctive cause criterion when applied 
correctly by the investigators will identify a set of variables that also blocks all backdoor paths. 
The other variable selection criteria based on all pretreatment covariates and risk factors do not 
have this property.57  The best approach to variable selection is less clear when unmeasured 
confounding may remain after statistical adjustment for measured variables, which is often 
expected in non-experimental CER.  In this case, every variable selection approach will result in 
bias.  The focus would then be on minimizing bias, which requires thoughtful consideration of 
the tradeoff between over and under-adjustment.  Strong arguments exist for error on the side of 
over-adjustment (adjusting for instruments and colliders) rather than failing to adjust for 
measured confounders (under-adjustment).36,44  Nevertheless, adjustments for instrumental 
variables have been found to amplify bias in practice.45 
 
Empirical variable selection approaches  
Historically, data collection for non-experimental studies was primarily collected prospectively 
and thoughtful planning was needed to ensure complete measurement of all important study 
variables.  We now live in an era where every interaction between the patient and the healthcare 
system produces hundreds, if not thousands, of data points that are recorded for clinical and 
administrative purposes.64  These large multi-use data sources are highly dimensional in that 
every disease, medication, laboratory result and procedure code, along with any electronically 
accessible narrative statements, can be treated as variables.   
 
The new challenge to the researcher is to select a set of variables from this high-dimensional 
space that characterizes the patient’s baseline status at the time of treatment selection to enable 
identification of causal effects or, at least, produces the least biased estimates.  Advances in 
computer performance and the availability of high-dimensional data have provided 
unprecedented opportunities to empirically use data to “learn” associational relationships from 
data.  Empiric variable selection techniques include identifying a subset of variables based on 
statistical associations with the treatment and/or outcome from the original set based on 
background knowledge of the relationship with treatment and/or outcome, as well as methods 
that are considered fully automated where all variables are initially selected based on statistical 
associations.  
 
Forward and Backward Selection Procedures 
When using traditional regression it is not uncommon to use, for the purposes of covariate 
selection, what are sometimes called forward and backward selection procedures.  Forward 
selection procedures begin with an empty set of covariates and then consider whether for each 
covariate, the covariate is associated with the outcome conditional on treatment (usually using a 
p-value cut-off in a regression model of 0.05 or 0.10).  The variable that is most strongly 
associated with outcome (based on having the smallest p-value below the cut-off) is then added 
to the collection of variables for which control will be made.  Then the process begins again, and 
one considers whether each covariate is associated with the outcome conditional on the treatment 
and the covariate already selected; the next covariate that is most strongly associated is again 
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added to the list.  The process repeats until all remaining covariates are independent of the 
outcome conditional on the treatment and the covariates that have been previously selected for 
control.  
 
Backward selection begins with all covariates in the model; then the investigator considers 
whether, for each covariate, that covariate is independent of the outcome conditional on the 
treatment and all other covariates (generally using a p-value cut-off in a regression model of 0.05 
or 0.10).  The covariate with the largest p-value above the cut-off is then discarded from the list 
of covariates for which control is made.  The process begins again, and the investigator considers 
whether, for each covariate, that covariate is independent of the outcome, conditional on the 
treatment and the other covariates not yet discarded; the next covariate with the weakest 
association with the outcome based on p-value is again discarded.  The process repeats itself 
until all variables still in the list are associated with the outcome conditional on the treatment and 
the other covariates that have not been discarded. 
 
Provided that the original set of covariates with which one begins suffices for unconfoundedness 
of treatment effects estimates, then if the backward selection process correctly discards variables 
that are independent of the outcome conditional on the treatment and other covariates, the final 
set of covariates selected by the backwards selection procedure will also yield a set of covariates 
that suffices for conditional exchangeability.57  Likewise, under an additional assumption of 
“faithfulness,”57 the forward selection procedure will identify a set of covariates that suffices for 
unconfoundedness provided that the original set of covariates with which one begins suffices to 
achieve unconfoundedness and that the forward selection process correctly identifies the 
variables that are and are not independent of the outcome conditional on the treatment and other 
covariates.  The forward and backward procedures can thus be useful for covariate reduction but 
both of them suffer from the need to specify a set of covariates to begin with that suffice for 
unconfoundedness.  Thus, even if an investigator intends to employ forward or backward 
selection procedures for covariate reduction, other approaches will be needed to decide on what 
set of covariates these forward and backward procedures should begin with.  Moreover, when the 
initial set of covariates does not suffice for unconfoundedness, it is not clear how forward and 
backward selection procedures will perform.  Variable selection procedures also suffer from the 
fact that estimates about treatment effects are made after having already used the data to decide 
on covariates. 
 
Similar but more sophisticated approaches using machine learning algorithms such as boosting, 
random forest, and other ensemble methods have become increasingly common, as have sparsity 
based methods such as LASSO, in dealing with high-dimensional data.  All of these empirically 
driven methods are, however, limited in that they are in general unable to distinguish between 
instruments, colliders, and intermediates on the one hand and genuine confounders on the other. 
Such differentiation needs to be made a priori on substantive grounds. 
 
Automatic High-Dimensional “Proxy” Adjustment 
In an attempt to capture important proxies for unmeasured confounders, Schneeweiss et al. 
proposed an algorithm that creates a very large set of empirically-defined variables from 
healthcare utilization data.56  The created variables capture the frequency of codes for 
procedures, diagnoses, and medication fills during a pre-exposure period.  The variables created 
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by the algorithm are required to have a minimum prevalence in the source population and to have 
some marginal association with both treatment and outcome.  After they are defined, the 
variables can be entered into a propensity score model.  In several example studies where the 
true effect of a treatment was approximately known from randomized controlled trials, the 
algorithm appeared to perform as well as or better than approaches based on simply adjusting for 
an a priori set of variables.45,65  By defining variables prior to treatment, propensity score 
methods will not “over-adjust” by including causal intermediates.  Using statistical associations 
to select potential confounders can result in selection and adjustment of colliders and 
instruments.  Therefore, the analyst should attempt to remove such variables from the set of 
identified variables.  For example, variables that are strong predictors of treatment but have no 
obvious relation to the outcome should be considered potential sources of Z-bias. 
 
A Practical Approach Combining Causal Analysis with Empirical Selection 
There is a continuum between knowing and not knowing the causal, structural relations of 
variables.  We suggest that a practical approach to variable selection may involve a combination 
of (1) a priori variable selection based on the researcher’s knowledge of causal relationships 
together with (2) empirical selection using the high-dimensional approach described above.8  The 
empirical approach could be used to select from a set of a priori variables based on the 
researcher’s knowledge and will ultimately select those to be included in the analysis.  This more 
limited use of empirically-derived variables may reduce confounding while simultaneously 
reducing the risk of including variables that could increase bias.   

Conclusion 
In practice, the particular approach that one adopts for observational research will depend on the 
researcher’s knowledge, the data quality, and the number of covariates.  A deep understanding of 
the specific clinical and public health risks and opportunities that lie behind the research question 
often drive these decisions. 
 
Regardless of the strategy employed, researchers should clearly describe how variables are 
measured and provide a rationale for a priori selection of potential confounders, ideally in the 
form of a causal graph.  If the researchers decide to augment the model by using an empiric 
variable selection technique, then they should present both models and describe how the 
additional variables were measured and selected.  Researchers should consider whether or not 
they believe adequate measurement is available in the dataset when employing a specific 
variable selection strategy.  In addition, all variables included for adjustment should be listed in 
the manuscript or final report.  When empiric selection procedures are newly developed or 
modified, researchers are encouraged to make the protocol and code publicly available to 
improve transparency and reproducibility. 
 
Even using the methods we describe in this chapter, confounding can persist.  Sensitivity 
analysis techniques are useful for assessing residual confounding resulting from unmeasured and 
imperfectly measured variables.66 -74  Sensitivity analysis techniques assess the extent to which 
an unmeasured variable would have to be related to the treatment and outcome of interest in 
order to substantially change the conclusions drawn about causal effects.  We refer the reader to 
Chapter 11 for discussion of sensitivity analysis techniques.  
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Checklist: Guidance and Key Considerations for Covariate Selection in CER Protocols and Proposals 
Guidance Key Considerations Check 

Describe the data 
source(s) that will be 
used to identify 
important covariates 

-    Provide information about the source(s) of data for key covariates, acknowledging the 
strengths and weaknesses of the data source (e.g., administrative claims, EMRs, chart 
review, patient self-report) for measuring each type of covariate.   

Discuss the potential for 
unmeasured 
confounding and 
misclassification 

- Discuss the potential impact of unmeasured confounders and misclassification or 
measurement error. 

- Propose specific formal sensitivity analysis of the impact of unmeasured confounders or 
misclassified variables. 
 

 

Describe the approach 
to be used to select 
covariates for statistical 
models 

- Approaches based on background knowledge (e.g., selection of all hypothesized common 
causes, disjunctive cause criterion, Directed Acyclic Graphs, or selection of all variables 
thought to be risk factors for the outcome. 

- Describe model reduction techniques to be used (e.g., forward or backward selection) 
- Describe empirical variable selection techniques and how variables were removed from 

consideration when they were thought to be bias-inducing rather than bias-reducing 
variables. 
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