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Chapter 2. Study Design Considerations 
 
Abstract 
The choice of study design often has profound consequences for the causal interpretation of 
study results. The objective of this chapter is to provide an overview of various study design 
options for non-experimental comparative effectiveness research (CER), their relative 
advantages and limitations, and provide information to guide the selection of an appropriate 
study design for a research question of interest. We begin the chapter by reviewing the potential 
for bias in non-experimental studies and the central assumption needed for non-experimental 
CER, i.e., that treatment groups compared have the same underlying risk for the outcome within 
subgroups definable by measured covariates (no unmeasured confounding). Commonly used 
cohort and case-control study designs are then described, along with other designs relevant to 
CER such as case cohort designs (selecting a random sample of the cohort and all cases), case-
crossover designs (using prior exposure history of cases as their own controls), case-time 
controlled designs (dividing the case-crossover odds ratio by the equivalent odds ratio estimated 
in controls to account for calendar time trends), and self-controlled case series (estimating the 
immediate effect of treatment in those treated at least once). Selecting the appropriate data 
source, patient population, inclusion/exclusion criteria, and comparators are discussed as critical 
design considerations. Employing a new user design, which allows adjustment for confounding 
at treatment initiation without the concern of mixing confounding with selection bias during 
follow-up, and recognizing and avoiding immortal time bias, which is introduced by defining the 
exposure during the follow-up time versus prior to follow-up, are also described. The chapter 
concludes with a checklist for the development of the study design section of a CER protocol or 
proposal, emphasizing the provision of a rationale for study design selection and the need for 
clear definitions of inclusion/exclusion criteria, exposures (treatments), outcomes, confounders, 
and start of follow-up or risk period. 
 
Introduction 
The objective of this chapter is to provide an overview of various study design options for non-
experimental comparative effectiveness research (CER) and their relative advantages and 
limitations. Out of the multitude of epidemiologic design options, we will focus on observational 
designs that compare two or more treatment options with respect to an outcome of interest where 
treatments are not assigned by the investigator but according to routine medical practice. We will 
not cover experimental or quasi-experimental designs, such as interrupted time series1, designed 
delays2, cluster randomized trials, individually randomized trials, pragmatic trials, or adaptive 
trials. These designs also have important roles in CER; however the focus of this guide is on 
non-experimental approaches to directly compare treatment options.   
 
The choice of study design often has profound consequences for the causal interpretation of 
study results that are irreversible in many settings. Study design decisions must therefore be 
considered even more carefully than analytic decisions, which can often be changed and adapted 
at later stages of the research project. Those unfamiliar with non-experimental design options are 
thus strongly encouraged to involve experts in the design of non-experimental treatment 
comparisons, e.g., epidemiologists, especially ones that are familiar with comparing medical 
treatments (e.g., pharmacoepidemiologists) during the planning stage of CER studies and 
throughout the project. In the planning stage of a CER study, researchers need to determine 
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whether the research question should be studied using non-experimental or experimental 
methods (or a combination thereof, e.g., 2-stage RCTs).3,4 Feasibility may determine whether an 
experimental or a non-experimental design is most suitable; situations may arise where neither 
approach is feasible. 
 
Issues of Bias in Observational CER 
In observational CER, the exposures or treatments are not assigned by the investigator but rather 
by mechanisms of routine practice. Although the investigator can (and should) speculate on the 
treatment assignment process or mechanism, the actual process will be unknown to the 
investigator. The non-random nature of treatment assignment leads to the major challenge in 
non-experimental CER studies, ensuring internal validity. Internal validity is defined as the 
absence of bias; biases may be broadly classified as selection bias, information bias, and 
confounding bias. Epidemiology has advanced our thinking about these biases for more than 100 
years, and many papers describing the underlying concepts and approaches to bias reduction 
have been published. For a comprehensive description and definition of these biases we suggest 
the book Modern Epidemiology. 5 Ensuring a study’s internal validity is a prerequisite for its 
external validity or generalizability. The limited generalizability of findings from randomized 
controlled trials (RCTs), e.g., to older adults, patients with co-morbidities or co-medications, is 
one of the major drivers for the conduct of non-experimental CER. 
 
The central assumption needed for non-experimental CER is that the treatment groups compared 
have the same underlying risk for the outcome within subgroups definable by measured 
covariates. Until recently this “no unmeasured confounding” assumption was deemed plausible 
only for unintended (usually adverse) effects of medical interventions, i.e., safety studies. The 
assumption was considered to be less plausible for intended effects of medical interventions 
(effectiveness) because of intractable confounding by indication.6,7 Confounding by indication 
leads to higher propensity for treatment or more intensive treatment in those with the most severe 
disease. A typical example would be a study on the effects of beta-agonists on asthma mortality 
in patients with asthma. The association between treatment (intensity) with beta-agonists and 
asthma mortality would be confounded by asthma severity. The direction of the confounding by 
asthma severity would tend to make the drug look bad (as if it is “causing” mortality). The study 
design challenge in this example would not be the confounding itself, but that it is hard to control 
for asthma severity because it is difficult to measure precisely.  Confounding by frailty has been 
identified as another potential bias when assessing preventive treatments in population-based 
studies, particularly those among older adults.8,9, 10,11 Because frail persons (close to death) are 
less likely to be treated with a multitude of preventive treatments8, frailty would lead to 
confounding which would bias the association between preventive treatments and outcomes 
associated with frailty (e.g., mortality). Since the bias would be that the untreated cohort has a 
higher mortality irrespective of the treatment, this would make the drug’s effectiveness look too 
good.  Here again the crux of the problem is that frailty is hard to control for because it is 
difficult to measure. 
 
Basic Epidemiologic Study Designs 
The general principle of epidemiologic study designs is to compare the distribution of the 
outcome of interest in groups characterized by the exposure/treatment/intervention of interest. 
The association between the exposure and outcome is then assessed using measures of 
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association. The causal interpretation of these associations is dependent on additional 
assumptions, most notably that the risk for the outcome is the same in all treatment groups 
compared (before they receive the respective treatments), also called exchangeability.12,13 
Additional assumptions for a causal interpretation, starting with the Hill criteria14, are beyond the 
scope of this chapter, although most of these are relevant to many CER settings (i.e., when 
treatment effects are heterogeneous, see chapter 3).  
 
The basic epidemiologic study designs are usually defined by whether study participants are 
sampled based on their exposure or outcome of interest. In a cross sectional study, participants 
are sampled independent of exposure and outcome and prevalence of exposure and outcome are 
assessed at the same point in time. In cohort studies, participants are sampled according to their 
exposures and followed over time for the incidence of outcomes. In case-control studies, cases 
and controls are sampled based on the outcome of interest and the prevalence of exposure in 
these two groups is then compared. Because the cross-sectional study design usually does not 
allow the investigator to define whether the exposure preceded the outcome, one of the 
prerequisites for a causal interpretation, we will focus on cohort and case-control studies as well 
as some more advanced designs with specific relevance to CER. 
 
Definitions of some common epidemiologic terms are presented in Table 2.1. Given the space 
constraints and the intended audience, these definitions do not capture all nuances.  

 
Table 2.1. Definition of epidemiologic terms 

Term Definition Comments 
Incidence Occurrence of the disease outcome over a 

specified time period. Incidence is generally 
assessed as a risk/proportion over a fixed time-
period (e.g., risk for 1-year mortality) or as a 
rate defined by persons and time (e.g., 
mortality rate per person-year). Incidence is 
often defined as first occurrence of the 
outcome of interest which requires prior 
absence of the outcome. 

Etiologic studies are based on incidence of 
the outcome of interest rather than 
prevalence because prevalence is a function 
of disease incidence and duration of disease. 

 

Prevalence Proportion of persons with the 
exposure/outcome at a specific point in time. 
Because prevalence is a function of the 
incidence and the mean duration of the disease, 
incidence is generally used to study etiology. 
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Term Definition Comments 
Measures of 
association 

Needed to compare outcomes across treatment 
groups. The main epidemiologic measures of 
association are ratio measures (risk ratio, 
incidence rate ratio, odds ratio, hazard ratio) 
and difference measures (risk difference, 
incidence rate difference). 

Difference measures have some very 
specific advantages over ratio measures, 
including the possibility to calculate 
numbers needed to treat (or harm) and 
providing a biologically more meaningful 
scale to assess heterogeneity.5 Ratio 
measures nevertheless abound in medical 
research. All measures of association should 
be accompanied by a measure of precision, 
e.g., a confidence interval. 

Confounding Mixing of effects; the effect of the treatments 
is mixed with the effect of the underlying risk 
for the outcome being different in the 
treatment groups compared. 

Leads to biased treatment effect estimates 
unless controlled for by design 
(randomization, matching, restriction) or 
analysis (stratification, multivariable 
models). 

Selection bias Distortion of treatment effect estimate as a 
result of procedures used to select subjects and 
from factors that influence study participation.  

While procedures to select subjects usually 
lead to confounding that can be controlled 
for, factors affecting study participation 
cannot be controlled for; factors affecting 
study participation are referred to as 
selection bias throughout this chapter to 
differentiate it from confounding. 

Information 
bias 

Distortion of treatment effect estimate as a 
result of measurement error in any variable 
used in a study, i.e., exposure, confounder, 
outcome. 

Often measurement error is used for 
continuous variables and misclassification 
for categorical variables; it is important to 
separate non-differential from differential 
measurement error; non-differential 
measurement error in exposures and 
outcomes tends to bias treatment effect 
estimates towards the null (no effect); non-
differential measurement error in 
confounders leads to residual confounding 
(any direction); differential measurement 
error leads to bias in any direction. 

 
Cohort Study  
 
Description 
Cohorts are defined by their exposure at a certain point in time (baseline date) and are followed 
over time after baseline for the occurrence of the outcome. For the usual study of first occurrence 
of outcomes, cohort members with the outcome prevalent at baseline need to be excluded. 
Cohort entry (baseline) is ideally defined by a meaningful event (e.g., initiation of treatment; see 
section on new user design) rather than convenience (prevalence of treatment) although this may 
not always be feasible or desirable. 
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Advantages 
The main advantage of the cohort design is that it has a clear timeline separating potential 
confounders from the exposure and the exposure from the outcome. Cohorts allow the estimation 
of actual incidence (risk or rate) in all treatment groups and thus the estimation of risk or rate 
differences. Cohort studies allow investigators to assess multiple outcomes from given 
treatments. The cohort design is also easy to conceptualize and readily compared to the RCT, a 
design with which most medical researchers are very familiar. 

 
Limitations 
If participants need to be recruited and followed over time for the incidence of the outcome, the 
cohort design quickly becomes inefficient when the incidence of the outcome is low. This has led 
to the widespread use of case-control designs (see below) in pharmacoepidemiologic studies 
using large automated databases. With the IT revolution over the past 10 years, lack of efficiency 
is rarely, if ever, a reason not to implement a cohort study even in the largest healthcare 
databases if all data have already been collected. 

 
Important considerations 
Patients can only be excluded from the cohort based on information available at start of follow-
up (baseline). Any exclusion of cohort members based on information accruing during follow-
up, including treatment changes, has a strong potential to introduce bias. The idea to have a 
“clean” treatment group usually introduces selection bias, e.g., by removing the sickest, those 
with treatment failure, or those with adverse events, from the cohort. The fundamental principle 
of the cohort is the enumeration of people at baseline (based on inclusion and exclusion criteria) 
and reporting losses to follow-up for everyone enrolled at baseline. Clinical researchers may also 
be tempted to assess the treatments during the same time period the outcome is assessed (i.e., 
during follow-up) instead of prior to follow-up. Another fundamental of the cohort design is, 
however, that the exposure is assessed prior to the assessment of the outcome, thus limiting the 
potential for reverse causality. This general principle also applies to time-varying treatments for 
which the follow-up time needs to start new after treatment changes rather than from baseline.  
 
Cadarette et al.15 employed a cohort design to investigate the comparative effectiveness of 4 
alternative treatments to prevent osteoporotic fractures.  The four cohorts were defined by the 
initiation of the four respective treatments (baseline date). Cohorts were followed from baseline 
to the first occurrence of a fracture at various sites. Statistical analyses adjusted for risk factors 
for fractures assessed at baseline to minimize bias. As discussed, the cohort design provided a 
clear timeline, differentiating exposure from potential confounders and the outcomes.   
 
Case-control Study 

 
Description 
Nested within an underlying cohort, the case-control design identifies all incident cases that 
develop the outcome of interest and compares their exposure history with the exposure history of 
controls sampled at random from everyone within the cohort that is still at risk for developing the 
outcome of interest. Given proper sampling of controls from the risk set, the estimation of the 
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odds ratio in a case-control study is a computationally more efficient way to estimate the 
otherwise identical incidence rate ratio in the underlying cohort. 

 
Advantages 
The oversampling of persons with the outcome increases efficiency compared with the full 
underlying cohort. As outlined above, this efficiency advantage is of minor importance in many 
CER settings. Efficiency is of major importance, however, if additional data (e.g., blood levels, 
biologic materials, validation data) need to be collected. It is straightforward to assess multiple 
exposures, although this will quickly become very complicated when implementing a new user 
design.  

 
Limitations 
The case-control study is difficult to conceptualize. Some researchers do not understand, for 
example, that matching does not control for confounding in a case-control study, whereas it does 
in a cohort study.16 Unless additional information from the underlying cohort is available, risk or 
rate differences cannot be estimated from case-control studies. Because the timing between 
potential confounders and the treatments is often not taken into account, current implementations 
of the case control design assessing confounders at the index date rather than prior to treatment 
initiation will be biased when controlling for covariates that may be affected by prior treatment. 
Thus, implementing a new user design with proper definition of confounders will often be 
difficult, although not impossible. If information on treatments needs to be obtained 
retrospectively, e.g., from an interview with study participants identified as cases and controls, 
there is the potential that treatments will be assessed differently for cases and controls which will 
lead to bias (often referred to as recall bias). 

 
Important considerations 
Controls need to be sampled from the “risk set”, i.e., all patients from the underlying cohort who 
remain at risk for the outcome at the time a case occurs. Sampling of controls from all those who 
enter the cohort (i.e., at baseline) may lead to biased estimates of treatment effects if treatments 
are associated with loss to follow-up or mortality. Matching on confounders can improve the 
efficiency of estimation of treatment effects, but does not control for confounding in case control 
studies. Matching should only be considered for strong risk factors for the outcome; however, the 
often small gain in efficiency must be weighed against the loss of the ability to estimate the 
effect of the matching variable on the outcome (which could, for example, be used as a positive 
control to show content validity of an outcome definition).17 Matching on factors strongly 
associated with treatment often reduces efficiency of case control studies (overmatching). 
Generally speaking, matching should not routinely be performed in case-control studies but be 
carefully considered, ideally after some study of the expected efficiency gains.16,18 
 
Martinez et al.19 conducted a case-control study employing a new user design.  The investigators 
compared venlafaxine and other anti-depressants and risk of sudden cardiac death or near death. 
An existing cohort of new users of anti-depressants was identified (“new” users were defined as 
subjects without a prescription for the medication in the year prior to cohort entry). Nested 
within the underlying cohort, cases and up to 30 randomly selected matched controls were 
identified. Potential controls were assigned an “index date” corresponding to the same follow-up 
time to event as the matched case.  Controls were only sampled from the “risk set”; i.e., controls 
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had to be at risk for the outcome on their index date, thus ensuring that bias was not introduced 
via the sampling scheme. 
 
Case Cohort Study 
In the case-cohort design, cohorts are defined as in a cohort study, and all cohort members are 
followed for the incidence of the outcomes.  Additional information required for analysis (e.g., 
blood levels, biologic materials for genetic analyses) is collected for a random sample of the 
cohort and for all cases (note that the random sample may contain cases). This sampling needs to 
be accounted for in the analysis20, but otherwise this design offers all the advantages and 
possibilities of a cohort study. The case-cohort design is intended to increase efficiency 
compared with the nested case-control design when selecting participants for whom additional 
information needs to be collected or when studying more than one outcome.  

 
Other Epidemiological Study Designs Relevant to CER 

   
Case-crossover Design 
Faced with the problem of selection of adequate controls in a case-control study of triggers of 
myocardial infarction, Maclure proposed to use prior exposure history of cases as their own 
controls.21 For this study design, only patients with the outcome (cases) who have discrepant 
exposures during the case and the control period contribute information. A feature of this design 
is that it is self-controlled, which removes the confounding effect of any characteristic of 
subjects that are stable over time (e.g., genetics). For CER, the latter property of the case-
crossover design is a major advantage because measures of stable confounding factors (to 
address confounding) are not needed. The former property or initial reason to develop the case-
crossover design, i.e. its ability to assess triggers of (or immediate, reversible effects of e.g., 
treatments on) outcomes may also have specific advantages for CER.  The case crossover design 
is thought to be appropriate for studying acute effects of transient exposures. 

 
Description 
Exactly as in a case-control study, the first step is to identify all cases with the outcome and 
assess the prevalence of exposure during a brief time window before the outcome occurred. 
Instead of sampling controls, we create a separate observation for each case that contains all the 
same variables except for the exposure, which is defined for a different time period. This 
“control” time period has the same length as the case period and needs to be carefully chosen to 
take e.g., seasonality of exposures into account. The dataset is then analyzed as an individually 
matched case-control study. 

 
Advantages 
The lack of need to select controls, the ability to assess short-term reversible effects, the ability 
to inform about the time window for this effect using various intervals to define treatment, and 
the control for all, even unmeasured factors that are stable over time are the major advantages of 
the case-crossover design. The design can also be easily added to any case-control study with 
little (if any) cost.  

  
Limitations 
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Because only cases with discrepant exposure history contribute information to the analysis, the 
case-crossover design is often not very efficient. This may not be a major issue if the design is 
used in addition to the full case-control design. While the design avoids confounding by factors 
that are stable over time, it can still be confounded by factors that vary over time. The possibility 
of time-varying conditions leading to changes in treatment and increasing the risk for the 
outcome (i.e., confounding by indication) would need to be carefully considered in CER studies. 
 
The causal interpretation changes from the effect of treatment versus no treatment on the 
outcome to the short term effect of treatment in those treated. Thus, it can be used to assess the 
effects of adherence/persistence with treatment on outcomes in those who have initiated 
treatment.22 

 
Case-time Controlled Design 
One of the assumptions behind the case-crossover design is that the prevalence of exposure stays 
constant over time in the population studied. While plausible in many settings, this assumption 
may be violated in dynamic phases of therapies (after market introduction or safety alerts). To 
overcome this problem, Suissa proposed the case-time controlled design.23 This approach divides 
the case-crossover odds ratio by the equivalent odds ratio estimated in controls. Greenland has 
criticized this design because it can re-introduce confounding thus detracting from one of the 
major advantages of the case-crossover design.24  

 
Description 
This study design tries to adjust for calendar time trends in the prevalence of treatments which 
can introduce bias in the case-crossover design. To do so, the design uses controls as in a case-
control design but estimates a case-crossover odds ratio (i.e., within individuals) in these 
controls. The case-crossover odds ratio (in cases) is then divided by the case-crossover odds ratio 
in controls. 

 
Advantages 
This design is the same as case-crossover design (with the caveat outlined by Greenland) with 
the additional advantage of not being dependent on the assumption of no temporal changes in the 
prevalence of the treatment. 

  
Limitations 
The need for controls removes the initial motivation for the case-crossover design and adds 
complexity. The control for the time trend can introduce confounding although the magnitude of 
this problem for various settings has not been quantified. 

  
 

Self-controlled Case-series  
Some of the concepts of the case-crossover design have also been adapted to cohort studies. This 
design, called self-controlled case-series25, shares most of the advantages with the case-crossover 
design, but requires additional assumptions. 

 
Description 
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As with the case-crossover design, the self-controlled case series estimates the immediate effect 
of treatment in those treated at least once. It is similarly dependent on cases that have changes in 
treatment during a defined period of observation time. This observation time is divided into 
treated person-time, a washout period of person-time, and untreated person-time. A conditional 
Poisson regression is used to estimate the incidence rate ratio within individuals. A SAS macro 
with software to arrange the data and to run the conditional Poisson regression is available.26,27 

 
Advantages 
The self-controlled design controls for factors that are stable over time. The cohort design, using 
all the available person-time information, has the potential to increase efficiency compared with 
the case-crossover design. The design was originally proposed for rare adverse events in vaccine 
safety studies for which it seems especially well suited. 

 
Limitations 
The need for repeated events or, alternatively, a rare outcome, and the apparent need to assign 
person-time for treatment even after the outcome of interest occurs, limits the applicability of the 
design in many CER settings. The assumption that the outcome does not affect treatment will 
often be implausible. Furthermore, it precludes the study of mortality as an outcome. The reason 
why treatment information after the outcome is needed is not obvious to us and this issue needs 
further study. More work is needed to understand the relation of the self-controlled case-series 
with the case-crossover design and to delineate relative advantages and limitations of these 
designs for specific CER settings. 

 
Study Design Features 
 
Study Setting 
One of the first decisions with respect to study design is consideration of the population and data 
source(s) from which the study subjects will be identified. Usually, the general population or a 
population-based approach is preferred but selected populations (e.g., a drug/device or disease 
registry) may offer advantages such as availability of data on covariates in specific settings. 
Availability of existing data and their scope and quality will determine whether a study can be 
done using existing data or whether additional new data need to be collected (see Chapter 8 for a 
full discussion of data sources). Researchers should start with a definition of the treatments and 
outcomes of interest, as well as the predictors of outcome risk potentially related to choice of 
treatments of interest (i.e., potential confounders).  Once these have been defined, availability 
and validity of information on treatments, outcomes, and confounders in existing databases 
should be weighed against the time and cost involved in collecting additional or new data. This 
process is iterative insofar that availability and validity of information may inform the definition 
of treatments, outcomes, and potential confounders. We need to point out that we do not make 
the distinction between retrospective and prospective studies here because this distinction does 
not affect the validity of the study design. The only difference between these general options of 
how to implement a specific study design lies in the potential to influence what kind of data will 
be available for analysis. 
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Inclusion and Exclusion Criteria 
Every CER study should have clearly defined inclusion and exclusion criteria.  The definitions 
need to include details about the study time period and dates used to define these criteria. Great 
care should be taken to use uniform periods to define these criteria for all subjects. If this cannot 
be achieved, then differences in periods between treatment groups need to be carefully evaluated 
because such differences have the potential to introduce bias. Inclusion and exclusion criteria 
need to be defined based on information available at baseline and cannot be updated based on 
accruing information during follow-up (see discussion of immortal time below). 
 
Inclusion and exclusion criteria can also be used to increase internal validity of non-experimental 
studies.  Consider an example where an investigator suspects that an underlying comorbidity is a 
confounder of the association under study.  A diagnostic code with a low sensitivity but high 
specificity for the underlying comorbidity exists (i.e., many subjects with the comorbidity aren’t 
coded; however, for patients that do have the code, nearly all have the comorbidity).  In this 
example, the investigator’s ability to control for confounding by the underlying comorbidity 
would be hampered by the low sensitivity of the diagnostic code (as there are potentially many 
subjects with the comorbidity that are not coded).   In contrast, restricting the study population to 
those with the diagnostic code removes confounding by the underlying condition due to the high 
specificity of the code.  
 
It should be noted that inclusion and exclusion criteria also affect generalizability of results. If in 
doubt, potential benefits in internal validity will outweigh any potential reduction in 
generalizability.   

 
Choice of Comparators 
Both confounding by indication and confounding by frailty may be strongest and most difficult 
to adjust for when comparing treated with untreated persons. One way to reduce the potential for 
confounding is to compare the treatment of interest with a different treatment for the same 
indication or an indication with a similar potential for confounding.28  A comparator treatment 
within the same indication is likely to reduce the potential for bias from both confounding by 
indication and confounding by frailty. This opens the door for using non-experimental methods 
to study intended effects of medical interventions (effectiveness). Comparing different treatment 
options for a given patient (i.e., the same indication) is at the very core of CER. Thus both 
methodological and clinical relevance considerations lead to the same principle for study design.  
  
Another beneficial aspect of choosing an active comparator group comprised of a treatment 
alternative for the same indication is the identification of the point in time when the treatment 
decision is made, so that all subjects may start follow-up at the same time, “synchronizing” both 
the timeline and the point at which baseline characteristics are measured. This reduces the 
potential for various sources of confounding and selection bias, including by barriers to treatment 
(e.g., frailty).8,29 A good source for active comparator treatments are current treatment guidelines 
for the condition of interest.  
 
Other Study Design Considerations 
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New User Design 
It has long been realized that the biologic effects of treatments may change over time since 
initiation.30 Guess used the observed risk of angioedema after initiation of angiotensin 
converting enzyme inhibitors, which is orders of magnitude higher in the first week after 
initiation compared with subsequent weeks31, to make the point. Non-biologic changes of 
treatment effects over time since initiation may also be caused by selection bias.8,29,32 For 
example, Dormuth et al.31 examined the relationship between adherence to statin therapy (more 
adherent versus less adherent) and a variety of outcomes thought to be associated with and not 
associated with statin use.  The investigators found that subjects classified as more adherent were 
less likely to experience negative health outcomes unlikely to be caused by statin treatment.   
 
Poor health, e.g., frailty, is also associated with non-adherence in RCTs33 and thus those 
adhering to randomized treatment will appear to have better outcomes, including those adhering 
to placebo.33 This selection bias is most pronounced for mortality34, but extends to a wide variety 
of outcomes, including accidents.31 The conventional prevalent user design thus is prone to 
suffer from both confounding and selection bias. While confounding by measured covariates can 
usually be addressed by standard epidemiologic methods, selection bias cannot. An additional 
problem of studying prevalent users is that covariates that act as confounders may also be 
influenced by prior treatment (e.g., blood pressure, asthma severity, CD4 count); in such a 
setting, necessary control for these covariates to address confounding will introduce bias because 
some of the treatment effect is removed. 
 
The new user design6,30,31,35,36 is the logical solution to the problems resulting from inclusion of 
persons who are persistent with a treatment over prolonged periods because researchers can 
adjust for confounding at initiation without the concern of selection bias during follow-up. 
Additionally, the approach avoids the problem of confounders potentially being influenced by 
prior treatment, and provides approaches for structuring comparisons which are free of selection 
bias, such as first treatment carried forward or intention to treat.  These and other considerations 
are covered in further detail in Chapter 5.  In addition, the new user design offers a further 
advantage in anchoring the time scale for analysis at time since initiation of treatment for all 
subjects under study. Advantages and limitations of the new user design are clearly outlined in 
the paper by Ray.36 Limitations include the reduction in sample size leading to reduced precision 
of treatment effect estimates and the potential to lead to a highly selected population for 
treatments often used intermittently (e.g., pain medications).37 Given the conceptual advantages 
of the new user design to address confounding and selection bias, it should be the default design 
for CER studies; deviations should be argued for and their consequences discussed. 
 
Immortal Time Bias 
While the term “immortal time bias” was introduced by Suissa in 200338, the underlying bias 
introduced by defining the exposure during the follow-up time rather than before follow-up was 
first outlined by Gail.39 Gail noted that the survival advantage attributed to getting a heart 
transplant in two studies enrolling cohorts of potential heart transplant recipients was a logical 
consequence of the study design. The studies compared survival in those that later got a heart 
transplant with those that did not, starting from enrollment (getting on the heart transplant list). 
As one of the conditions to get a heart transplant is survival until the time of surgery, this 
survival time prior to the exposure classification (heart transplant or not) should not be attributed 
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to the heart transplant and is described as “immortal”. Any observed survival advantage in those 
who received transplants cannot be clearly ascribed to the intervention if time prior to the 
intervention is included because of the bias introduced by defining the exposure at a later point 
during follow-up. Suissa38 showed that a number of pharmacoepidemiologic studies assessing 
the effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease were also 
affected by immortal time bias. While immortal person time and the corresponding bias is 
introduced whenever exposures (treatments) are defined during follow-up, immortal time bias 
can also be introduced by exclusion of patients from cohorts based on information accrued after 
the start of follow-up, i.e., based on changes in treatment or exclusion criteria during follow-up. 
 
It should be noted that both the new user design and the use of comparator treatments reduce the 
potential for immortal time bias. These design options are no guarantee against immortal time 
bias, however, unless the corresponding definitions of cohort inclusion and exclusion criteria are 
based exclusively on data available at start of follow-up (i.e. at baseline).40  
 
Conclusion 
This chapter provides an overview of advantages and limitations of various study designs 
relevant to CER. It is important to realize that many see the cohort design as more valid than the 
case-control design.  Although the case-control design may be more prone to potential biases 
related to control selection and recall in ad hoc studies, if a case-control study is nested within an 
existing cohort (e.g., based within a large healthcare database) its validity is equivalent to the one 
of the cohort study under the condition that the controls are sampled appropriately and the 
confounders are assessed during the relevant time period (i.e., before the treatments). Because 
the cohort design is generally easier to conceptualize, implement, and communicate, and 
computational efficiency will not be a real limitation in most settings, the cohort design will be 
preferred when data have already been collected. The cohort design has the added advantage that 
absolute risks or incidence rates can be estimated and therefore risk or incidence rate differences 
can be estimated, which have specific advantages as outlined above. While we would always 
recommend including an epidemiologist in the early planning phase of a CER study, an 
experienced epidemiologist would be a prerequisite outside of these basic designs. 
 
Some additional study designs have not been discussed. These include hybrid designs like 2-
stage studies41, validation studies42, ecologic designs arising from natural experiments, 
interrupted time series, adaptive designs and pragmatic trials. Many of the issues that will be 
discussed in the following chapters about how to deal with treatment changes (stopping, 
switching, and augmenting) will also need to be addressed in pragmatic trials because their 
potential to introduce selection bias will be the same in both experimental and non-experimental 
studies. 
 
Knowledge of study designs and design options is essential to increase internal and external 
validity of non-experimental CER studies. An appropriate study design is a prerequisite to reduce 
the potential for bias. Biases introduced by suboptimal study design cannot usually be removed 
during the statistical analysis phase. Therefore the choice of an appropriate study design is at 
least as important, if not more important, than the approach to statistical analysis.



Chapter 2: Study Design Considerations 

Page 13 of 16 
 

Checklist: Guidance and Key Considerations for Study Design for an Observational CER protocol or proposal 
Guidance Key Considerations Check 
Provide rationale for 
study design  choice 
and describe key 
design features 

- Cohort study proposals should clearly define cohort entry date (baseline date), employ a new user 
design (or provide rationale for including prevalent users), and plans for reporting losses to follow-
up 

-  Case-control study proposals should clearly describe the control sampling method, employ a new 
user design (or provide a rationale for assessing confounders at index date), and assess potential for 
recall bias (if applicable) 

- Case-cohort study proposals should include how the sampling scheme will be accounted for during 
analysis 

- Case-crossover study proposals should discuss the potential for confounding by time-varying 
factors, and clearly state how the resulting effect estimate can be interpreted  

- Case-time controlled study proposals should clearly weigh the pros and cons of accounting for 
calendar trends in the prevalence of exposure 

 

Define start of follow-
up (baseline) 

- The time point for start of follow-up should be clearly defined and meaningful, ideally anchored to 
the time of a medical intervention (e.g., initiation of drug use) 

- If alternative approaches are proposed, the rationale should be provided and implications discussed 
 

Define inclusion and 
exclusion criteria at 
start of follow-up 
(baseline) 

- Exclusion and inclusion criteria should be defined at the start of follow-up (baseline) and solely 
based on information available at this point in time (i.e., ignoring potentially known events after 
baseline). 

- The definition should include the time window for assessment (usually the same for all cohort 
members) 

 

Define exposure 
(treatments) of interest 
at start of follow-up 

 
 

Define outcome(s) of 
interest  

- Provide information on measures of accuracy if possible  

Define potential 
confounders 

- Potential confounders known to be associated with treatment and outcome should be pre-specified 
when possible 

- Confounders should be assessed prior to exposure or treatment initiation to ensure they are not 
affected by the exposure 

- Approaches to empirical identification of confounders should be described if planned 
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