
ii 

Draft Methods Research 
Number XX 
 
 
 
Effect Size Metric Choices as Factors in Meta-Analytic 
Statistical Inferences 
 
 
Prepared for:  
Agency for Healthcare Research and Quality 
U.S. Department of Health and Human Services 
540 Gaither Road 
Rockville, MD 20850 
www.ahrq.gov 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AHRQ Publication No. xx-EHCxxx 
<Month Year> 

This information is distributed solely for the purposes of pre-dissemination peer review. It 
has not been formally disseminated by the Agency for Healthcare Research and Quality. It 
does not represent and should not be construed to represent an Agency for Healthcare 
Research and Quality or Department of Health and Human Services (AHRQ) determination 
or policy. 



iii 

 
This report is based on research conducted by the XXXXX Evidence-based Practice Center 
(EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, 
MD (Contract No. XXX-XXX-XXXXX). The findings and conclusions in this document are 
those of the authors, who are responsible for its contents; the findings and conclusions do not 
necessarily represent the views of AHRQ. Therefore, no statement in this report should be 
construed as an official position of AHRQ or of the U.S. Department of Health and Human 
Services. 
 
The information in this report is intended to help health care decision makers—patients and 
clinicians, health system leaders, and policymakers, among others—by improving the methods 
that meta-analyses use to accumulate data about health care services and other matters. This 
report is not intended to apply clinical judgment. Anyone who makes decisions concerning the 
provision of clinical care should consider this report in the same way as any medical reference 
and in conjunction with all other pertinent information, i.e., in the context of available resources 
and circumstances presented by individual patients. 
 
This report may be used, in whole or in part, as the basis for development of clinical practice 
guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage 
policies. AHRQ or U.S. Department of Health and Human Services endorsement of such 
derivative products may not be stated or implied. 
 
This document is in the public domain and may be used and reprinted without permission except 
those copyrighted materials that are clearly noted in the document. Further reproduction of those 
copyrighted materials is prohibited without the specific permission of copyright holders. 
 
Persons using assistive technology may not be able to fully access information in this report. For 
assistance contact [insert program e-mail address]. 
 
None of the investigators has any affiliations or financial involvement that conflicts with the 
material presented in this report.  
 
Suggested citation: To be added in final version of report.



iv 

Preface 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 
assessments to assist public- and private-sector organizations in their efforts to improve the 
quality of health care in the United States. The reports and assessments provide organizations 
with comprehensive, science-based information on common, costly medical conditions and new 
health care technologies and strategies. The EPCs systematically review the relevant scientific 
literature on topics assigned to them by AHRQ and conduct additional analyses when 
appropriate prior to developing their reports and assessments. 

To improve the scientific rigor of these evidence reports, AHRQ supports empiric research 
by the EPCs to help understand or improve complex methodologic issues in systematic reviews. 
These methods research projects are intended to contribute to the research base in and be used to 
improve the science of systematic reviews. They are not intended to be guidance to the EPC 
program, although may be considered by EPCs along with other scientific research when 
determining EPC program methods guidance.  

AHRQ expects that the EPC evidence reports and technology assessments will inform 
individual health plans, providers, and purchasers as well as the health care system as a whole by 
providing important information to help improve health care quality. The reports undergo peer 
review prior to their release as a final report.  

We welcome comments on this Methods Research Project. They may be sent by mail to the 
Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither 
Road, Rockville, MD 20850, or by e-mail to epc@ahrq.hhs.gov. 

 
Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. 
Director Director, Center for Outcomes and Evidence 
Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality 
 
Stephanie Chang, M.D., M.P.H. Parivash Nourjah 
Director Task Order Officer 
Evidence-based Practice Program Center for Outcomes and Evidence 
Center for Outcomes and Evidence Agency for Healthcare Research and Quality 
Agency for Healthcare Research and Quality 
 
 

mailto:epc@ahrq.hhs.gov


v 

Acknowledgments 

 

Peer Reviewers 
<Name> 
<Place> 
<City>, <ST> 
 
<Name> 
<Place> 
<City>, <ST> 
 
  



vi 

Effect Size Metric Choices as Factors in Meta-Analytic 
Statistical Inferences 

 
Structured Abstract 
Introduction. Meta-analysis cannot proceed unless each study outcome is on the same metric 
and has an appropriate sampling variance estimate, the inverse of which is used as the weight in 
meta-analytic statistics. When comparing treatments for trials that use the same measures across 
studies, contemporary meta-analytic practice uses the original (raw) unstandardized mean 
difference (UMD) to model the difference between the observed means (i.e., ME-MC) rather than 
representing effects in the standardized mean difference (SMD). A fundamental difference 
between the two strategies is that the UMD incorporates the observed variance of the measures 
as a component of the analytical weights (viz., sampling error or inverse variance) in statistically 
modeling the results for each study. In contrast, the SMD incorporates the measure variance 
directly in the effect size (ES) itself (i.e., SMD=[ME-MC]/SD) and not directly in the analytical 
weights. The UMD approach has been conventional despite the fact that its bias and efficiency 
are unknown and have not been compared to the SMD. Also unresolved is which of many 
possible available equations best optimize statistical modeling for the UMD and SMD (and 
versions of these equations that examine repeated measures versus between-groups (or mixed) 
designs). 
 
Estimates of SMD and its variance depend on whether the comparison is derived from a repeated 
measures or between groups design and on the particular statistical approach used and they are 
not always equivalent. Although several methods exist to estimate SMD and its variance, none 
provide an unbiased estimation and the circumstances under which they are most comparable is 
currently unknown. Three designs are compared: posttest-measures two-groups, repeated-
measures one-group, and repeated-measures two-groups design. The SMD for the last two can be 
estimated using a change-score metric or a raw-score metric of the effect size, depending 
whether the correlation between pretest and posttest is used to standardize the effect. 
 
Methods. Monte Carlo simulations compared available equations in terms of their bias and 
efficiency across the many different conditions established by crossing: (1) number of studies in 
the meta-analysis (k = 10, 20, 50, and 100); (2) mean study sample sizes (5 values of N ranging 
from small to very large); (3) the ratio of the within-study observed measure variances for 
experimental and control groups and at pretest and posttest (ratios: 1:1, 2:1, and 4:1); (4) the 
posttest mean of each pseudo experimental group to achieve 3 parametric effect sizes ( E

postµ = 
0.25, 0.50, and 0.80); (5) normal  versus non-normal distributions (4 levels); (6) the between-
studies variance (τ2= 0, 0.04, 0.08, 0.16, and 0.32). For the second issue, (7) the correlation 
between the two conditions was manipulated through the variance-covariance matrix, where 
homogeneous variances equal to 1 can be assumed. The manipulated correlation was equal to the 
covariance between the two measures (ρpre-post = 0, 0.25, 0.50, and 0.75).  
 
Results. Simulations showed that leaving the effect size (ES) index in the original metric 
presents no bias or loss of efficiency when distributions are normal, when there is no 
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heterogeneity among effects, and when the observed variances of the experimental and control 
groups are equal; in contrast, when conditions deviate from these ideals, standardizing outcomes 
is markedly better. When there is high skewness and kurtosis, neither metric has a marked 
advantage. Thus, the standardized index presents the least bias under most conditions and is 
more efficient than the unstandardized index. The unstandardized mean difference ES has higher 
efficiency only with very small within-study variances or study sample sizes. 
 
Standardized effect sizes can be recommended under all conditions. It is particularly the case that 
the standardized mean difference will perform better when within-study variability is large, when 
parametric assumptions are poorly met, and when sample sizes increase. Finally, the results 
comparing all the SMD and its variance estimations show both the utility of a new solution and 
conditions under which different estimation procedures may affect results depending on the 
design and the metric. All estimations reach similar inferences when they do not include the 
correlation between pretest and posttest or if the correlation between measures is 0.50. The 
current results imply that the choice of effect size metrics, estimators, and sampling variances 
can have large effects on statistical inferences even under such commonly observed 
circumstances as normal sampling distributions, large samples of studies and studies with large 
samples, and when effects exhibit heterogeneity. Thus, this investigation provides guidance for 
improved statistical practice in relation to meta-analysis of literatures comprised of studies that 
compare two groups at one point in time, or that examine repeated measures for one or two 
groups. The Discussion considers clinical interpretation of results using the SMD and addresses 
limitations of the current project. 
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Introduction 
Background 

Over the past 30 years, meta-analytic methods to accumulate knowledge have experienced a 
sharp increase in use across the sciences, and have been applied to many topics of high import to 
public health. Using meta-analysis, the result of every study is quantified by means of a 
statistical index that one can apply to all studies in a given literature, thereby enabling a 
comprehensive summary of the magnitude of the effect in every study and analyses of outcomes 
according to coded study features.1-11 Conventionally, meta-analysis has three main objectives: 
(1) synthesizing different studies’ effect size values to obtain a weighted mean, (2) assessing the 
consistency of the results, and (3) in the case of inconsistency (or heterogeneity), using 
moderator variables in an attempt to explain the variability. To do their work, meta-analysts must 
complete a series of interrelated steps: (1) conceptually define the topic of the review, (2) set 
selection criteria for the sample of studies, (3) comprehensively search for qualified studies, (4) 
code studies for their distinctive substantive, methodological and external characteristics, (5) 
represent the magnitude of each study’s effect on the same metric, (6) analyze the database, and 
(7) interpret and present the results. To the extent that meta-analysts have the best available 
techniques to complete each step, the accuracy of their conclusions will be enhanced; science 
and its applications can accumulate and report its research findings in a more efficient manner.  

The current report focuses on the 5th and 6th steps: Meta-analysis cannot proceed unless each 
study outcome is represented on the same metric and has an appropriate sampling variance 
estimate, the inverse of which is used as the weight in meta-regression and other meta-analytic 
statistics. In contemporary practice, when comparing treatments for trials that use the same 
measures across studies, meta-analyses routinely use the original or unstandardized mean 
difference (UMD) to model the difference between the observed means (i.e., ME-MC) rather than 
representing effects in the standardized mean difference (SMD). A fundamental difference 
between the two strategies is that the UMD incorporates the observed variance of the measures 
as a component of the analytical weights (viz., sampling error or inverse variance) in statistically 
modeling the results for each study. In contrast, the SMD incorporates the measure variance 
directly in the effect size (ES) itself (i.e., SMD=[ME-MC]/SD) and not directly in the analytical 
weights. The UMD approach has been conventional despite the fact that its bias and efficiency 
are unknown and have not been compared to the SMD. Also unresolved is which of many 
possible available equations best optimize statistical modeling for the UMD and SMD. There are 
many equations that examine repeated measures and there are many potential estimates of the 
inverse variance needed for modeling either UMD or SMD.  

Another important and controversial issue is specifically related to the SMD. This estimator 
is used to measure the degree of change between repeated measures or the difference between 
two groups, using a standardization that can vary depending on the standard deviation used, with 
the assumption that the measures follow a normal distribution. In its between-groups form, SMD 
can be calculated from any two groups whether they are experimental or not; it is assumed that 
the individuals in the compared groups are independent. In its repeated-measures or within-
subjects form, SMD assumes that the observations are dependent, and while some extant meta- 
analytic procedures account for this dependency, many others do not; scholars will often 
integrate both types of estimates in a single meta-analysis. Similarly, the numerous methods of 
calculating the SMD and their variances are known to vary.17-18 
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Therefore, it is unknown how much bias appears in the weighted effect sizes and posterior 
analyses when two-groups, two-groups repeated measures, or single groups with repeated 
measures are integrated without incorporating assumptions about possible dependence arising 
from the those observations with repeated measures. Further, it is not clear in the literature if the 
different methods of transformation to standardized mean difference from different statistical 
information types are equal across design types. There is conflicting advice about which specific 
technique equations to invoke when trials assess an outcome on the same measure and/or 
evaluate outcomes using repeated measures versus between-groups (or mixed) designs.  

Objectives 
This report has two objectives: 
1. Determine the bias and efficiency of the unstandardized mean difference (UMD) relative 

to the standardized mean difference (UMD) under a wide range of analytic 
circumstances. 

In literatures for which a phenomenon is assessed using the same measure in every study, 
meta-analysts have the choice of examining either standardized effect sizes (d, OR, etc.) or 
leaving study outcomes in the original, unstandardized, measure.12 For example, blood pressure 
is always assessed in millimeters of mercury (mm/Hg) and meta-analyses of blood pressure 
outcomes routinely leave it in this metric. Efficacy in anti-depressant trials is routinely assessed 
on the Hamilton Rating Scale of Depression (HAM-D), and many meta-analyses examine it in 
this metric. Analysts typically leave study results in the original unstandardized measure in order 
to facilitate their interpretability. Many prominent statisticians have even recommended leaving 
comparisons in a unstandardized measure to facilitate comparisons between studies.13-15  

Such comparisons make a great deal of sense when the studies’ samples exhibit equal 
variances on the measures of their phenomenon. Yet, to the extent that their studies have unequal 
measure variances, meta-analyses that leave results unstandardized may yield inferences that 
poorly represent the underlying studies outcomes. For example, anti-depressant trials focusing on 
very severely depressed individuals (e.g., M HAM-D=33) will have much larger standard 
deviations than trials that focus on moderately depressed individuals (e.g., M HAM-D=17). 
Making the problem worse, some trials select patients in narrower ranges of the scale, artificially 
making the underlying standard deviation smaller relative to other trials. Change of, say, 6 units 
on the HAM-D is more dramatic change for a sample with a small standard deviation than for a 
sample with a large one. In such instances, a standardized effect size metric (e.g., d) may solve 
the problem. Weights for unstandardized outcomes in meta-analysis routinely use the sample 
size and the measure variance,12,16 but it is unclear whether this solution solves the problem. 
Homogeneity of compared group variances in primary-level research is an analogous assumption 
to the problem that appears in terms of between-studies heterogeneity in observed measurement 
variances. 
 
The second objective is: 

2. Determine the best techniques to calculate effect size estimates and their sampling 
variances for different designs and under different design and parametric conditions.  

Accurate estimation of effect sizes and their sampling variances when studies with different 
designs are integrated. Meta-analysis cannot proceed unless each study outcome is on the same 
metric and an appropriate sampling variance can be calculated for it. Current meta-analytic 
methods yield conflicting advice about which specific techniques to invoke when the outcomes 
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are provided from different designs, specifically, within-, between-subjects, or mixed-design, 
again with the result that significance testing and interpretation may vary depending on how they 
are integrated.  

An effect size estimator is used to measure the degree of change between repeated measures 
or to compare the difference between two or more groups, with the assumption that the measures 
follow a normal distribution. In its between-groups form, the effect size (ES) estimator can be 
calculated from any two groups whether they are experimental or not; it is assumed that the 
individuals in the compared groups are independent. In its repeated-measures or within-subjects 
form, the effect size estimator assumes that the observations are dependent, and while some 
meta-analytic procedures account for this dependency, many others do not; scholars often 
integrate both types of estimates in a single meta-analysis or they more simply focus on post-test 
results without incorporating baseline measures or the power of the different groups to detect the 
effect. Similarly, the numerous methods of calculating the ES when the outcome is continuous 
and their available variances are known to vary.17,18 Therefore, it is unknown how much bias 
occurs in calculations of the weighted effect size and its posterior analysis in these different 
instantiations are integrated without assumptions about the possible dependence and other design 
and parametric conditions (e.g., sample size, number of studies, parametric effect size) arising 
from the two types of repeated measures observations. Further, the literature leaves unclear 
whether the different methods of transformation to standardized mean difference from different 
statistical information types are equivalent.6,19-22  
 
Orientation to Method.  

For both specific aims, statistical analytical work will be developed and Monte Carlo 
simulation studies will be used to test it generating data under a wide variety of conditions to 
determine the extent to which parameter estimates, sample sizes, and number of studies are 
unbiased and their standard errors efficient. The simulations will (a) evaluate the differences 
between using unstandardized versus standardized metric of effect size (objective 1); (b) evaluate 
current solutions to estimate the ES and its sampling variance, differentiating among three main 
design types (i.e., two-groups, two-groups repeated-measures, and repeated measures design) 
(objective 2); (c) develop new solutions as necessary (our team has generated some new 
alternatives for estimating repeated measures effect sizes and their sampling variances) 
(objective 2); and (d) conduct simulations under widely varying conditions to gauge the 
performance of these methods of estimation (objectives 1 and 2).  
 
Significance of Project 

The goals of this project are relevant to any empirical literature that has systematic 
observations; these concern statistical operations that are very commonly used in contemporary 
practice. Even if it turns out that meta-analytic statistics in the original metric are robust to 
underlying deviations in measure variance, the results of this investigation are of great interest. If 
meta-analytic statistics and inferences using unstandardized effect sizes are sensitive to 
deviations in unequal measure variance and normality assumptions (and other circumstances), 
then the findings have far-ranging implications for the practice of meta-analysis. Moreover, it is 
also important to know what estimates of within-subjects ESs (in single- and in two-group 
designs) are the most accurate, and to determine which estimates of variance, for use in 
conducting weighted analyses and when those two types of designs can be combined in a single 
meta-analytic database. Knowing how well each effect size index for each design performs will 
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enable future analysts a better choice of the most appropriate operations and, as a consequence, 
permit more studies to be integrated and more accurate meta-analytic results. Thus, this 
methodological study offers considerable information to improve the accuracy and progress of 
science and public health. An overarching goal is to permit scholars to incorporate greater 
numbers of studies in their meta-analyses and enable more accurate empirical generalizations.  

Project Specific Terminology 
Throughout this report we will use the following specific definitions: 
• Bias: The extent to which the observed UMD or SMD differs from the parametric value. 

Positive values of bias imply over-estimations of the parametric effect size and negative 
values imply under-estimations. 

• Change-score metric: The difference between two repeated measures compared to the 
variability of change scores  

• Effect size (ES): In the current investigation, comparisons between groups, comparisons 
across time, or both, are effect sizes, or indexes of association. 

• Efficiency: A measure of the optimality of an estimator that reaches the closest value to the 
parameter with the minimum variance through replicates To the extent that efficiency is 
positive, statistical power is maximized to detect the parametric value.   

• Mean Square Error (MSE): A measure of the average of the square of the errors that 
evaluates the quality of an estimator in terms of its variation and unbiasedness. 

• One-group repeated-measures design: A study methodology in which a single sample is 
observed at two or more time points (e.g., before and after a treatment). 

• Raw-score metric: A metric that compares a mean or mean difference between conditions or 
times with the variability of scores within each condition.  

• Sampling variance of effect size for one-group repeated-measures design: The variance 
of the sampling distribution, which is the distribution of values that result from repeated 
random samples of the same size using a repeated-measures design (see Table 3 for extant 
estimations of this statistic). 

• Sampling variance of effect size for two independent groups: The same as the preceding 
one but for studies following a two-groups design (see Table 4 for extant estimations of this 
statistic). 

• Standardized mean difference (SMD) effect size: the difference of two means divided by 
the pooled standard deviation of underlying the two means. 

• Standardized mean difference (SMD) for one-group repeated-measures design: The 
effect size comparing two means at different times for the same group relative to the standard 
deviation (see Table 1 for extant estimations of this statistic). 

• Standardized mean difference (SMD) for two independent groups: The effect size the 
change in means for two independent groups (repeated-measures, between-groups version) or 
the comparison of the means at posttest for two independent groups (between-groups 
version). (See Table 2 for extant estimations of this statistic.) 

• Two-groups repeated measures design: A study methodology in which two groups (or 
arms; e.g., treatment and control) are observed at two or more times. 

• Unstandardized mean difference (UMD) effect size: the difference of the two means in 
their original metric or scale (where all studies use the same metric). 
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Following are the Greek terms that appear in this report: 
Term Definition 

�̂�𝑗 
The sample estimate of population parameter δ for the jth replication 

E
postµ  Parametric mean at posttest for the experimental group 
E
Preµ  Parametric mean at pretest for the experimental group 
C
Postµ  Parametric mean at posttest for the control group 
C
Preµ  Parametric mean at pretest for the control group 
2
Preσ  Parametric variance at pretest 
2
Postσ  Parametric variance at posttest 

𝜎𝑃𝑟𝑒,𝑃𝑜𝑠𝑡 Covariance between pre- and posttest 
ρ Parametric correlation 
ρpre-post Parametric correlation between pre-and posttest 
σC Parametric standard deviation of the control group 
σE Parametric standard deviation of the experimental group 
τ2 Between-study variance 
 
Following are the Latin abbreviations used in this report: 

Term Definition 
db Standardized mean difference proposed by Becker (See Table 1, No. 3 for 

details and elements of the equation) 
db_nonr Becker’s standardized mean difference, which excludes the correlation factor 

2(1 – r) in its equation 
df Degrees of freedom 
dg Standardized mean difference proposed by Gibbons (See Table 1, No. 4 for 

details and elements of the equation) 
dhb Standardized mean difference proposed by Hedges (See Table 2, No. 6 for 

details and elements of the equation) 
dhw Standardized mean difference proposed by Huedo-Medina & Johnson (See 

Table 1, No. 5 for details and elements of the equation) 
dhw_nonr Hedges’ standardized mean difference using the within-study degrees of 

freedom and excluding the correlation factor 2(1 – r) 
ds1 Standardized mean difference proposed by Shadish (See Table 2, No. 10 for 

details and elements of the equation) 
ds2 Standardized mean difference proposed by Shadish using the standard 

deviation from ANOVA results (See Table 2, No. 11 for details and elements 
of the equation) 

ds3 Standardized mean difference proposed by Shadish using the standard 
deviation from ANCOVA results (See Table 2, No. 12 for details and 
elements of the equation) 

dtch Standardized mean difference based on t-test for change-score metric (See 
Table 1, No. 2 for details and elements of the equation) 

dtra Standardized mean difference based on t-test for raw-score metric (See Table 
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Term Definition 
1, No. 1 for details and elements of the equation) 

ES Effect size 
HAM-D Hamilton rating scale of depression 
k Number of studies 
M HAM-D Mean score on the HAM-D 
MC Mean control 
ME Mean experimental 
mmHg Millimeters  of mercury (used in measures of blood pressure) 
MSE  Mean square error 
N Total sample size 
n Group sample size 
OR Odds ratio 
r Estimated correlation 
Rns The number of replications 
SD Standard Deviation 
SMD Standardized mean difference (d) 
UMD  Unstandardized mean difference 
varone-g (db) Variance estimate for one group design with repeated measures of the 

standardized mean difference proposed by Becker (See Table 3, No. 13 for 
details and elements of the equation) 

varone-g (dg) Variance estimate for one group design with repeated measures of the 
standardized mean difference proposed by Gibbons (See Table 3, No. 14 for 
details and elements of the equation) 

vartwo-g (db) Variance estimate for two group design with repeated measures of the 
standardized mean difference as a function of two effect sizes proposed by 
Becker (See Table 4, No. 16 for details and elements of the equation) 

vartwo-g (db_t) Variance estimate for two group design with repeated measures of the 
standardized mean difference proposed by Hedges (See Table 4, No. 15 for 
details and elements of the equation) 

vartwo-g (dg) Variance estimate for two group design with repeated measures of the 
standardized mean difference as a function of two effect sizes proposed by 
Gibbons (See Table 4, No. 18 for details and elements of the equation) 

vartwo-g (dg_t) Variance estimate for two group design with repeated measures of the 
standardized mean difference proposed by Gibbons (See Table 4, No. 17 for 
details and elements of the equation) 

YC Control outcome 
YE Experimental outcome 
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Table 1. Standardized mean difference ES estimations (and their components) for a one-group repeated-measures design 
No. Source Equation  Components 

1.  Glass (1981)3 
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1 2(1 )tra d Pre Postd t r
n

= −  
( ) ( )2

, ,2 1 2 1
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SDiff =  Standard deviation of the difference assuming 
unequal variances. 
n = number of observations 
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− −  

PreS = standard deviation of the pretest
 4.  Gibbons et al. (1993)37 

( 1) Diff
g

Diff

Y
d c n

S
= −   

5.  Huedo-Medina & 
Johnson  ( 1) Post Pre

hw
within pool

Y Yd c n
S −

−
= −  

2 2
2 2( 1) ( 1)

1
Pre Post

Within pool Pre Post
n S n SS S S

n−

− + −
= = +

−  
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Table 2. Standardized mean difference (SMD) ES estimations (and their components) for two independent groups. 
No. Source Equation  Components 

6.  Hedges (1981)38 

( 2)
E C
Post Post

hb
Pooled

Y Yd c N
S
−

= −  

 
 

3( 2) 1
4( 2) 1

c N
N

− = −
− −  
2 2( 1) ( 1)

2
E E C C

Pooled
E C

n S n SS
n n

− + −
=

+ −                       

      
𝑠
 N = nE + nC 

𝑆𝐸  = posttest standard deviation of the experimental 
group. 
𝑆𝐶 = posttest standard deviation of the control group. 

E
PostY = posttest mean of the experimental group

 

C
PostY = posttest mean of the control group

 
7.  Becker (1988)19 

( 2)
E E C C
Post Pre Post Pre

b E C
Pre Pre

Y Y Y Yd c N
S S

 − −
= − − 

  
  

8.  Gibbons et al. (1993)37 

( 2)
Diff Diff

E C
Diff Diff

g E C

Y Y
d c N

S S

 
= − − 

  
  

9.  Huedo-Medina & 
Johnson  ( 2)

E E C C
Post Pre Post Pre

hw E C
within pool within pool

Y Y Y Yd c N
S S− −

 − −
= − − 

  
 

 

 

10.  Shadish et al. (1999)36  
1

E C
Post Post

s
Pooled

Y Yd
S
−

=  

  

2 2( 1) ( 1)
2

E E C C
Pooled

E C

n S n SS
n n

− + −
=

+ −

,

| |

| | 2(1 )

E E
Pre Post l

E E E
d Pre Post

Y Y n
S

t r

−
=

−
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No. Source Equation  Components 

,

| |

| | 2(1 )

C C
Pre Post l

C C C
d Pre Post

Y Y n
S

t r

−
=

−  
11.  Shadish et al. (1999)36  

2

E C
Post Post

s
ANOVA

Y Yd
S
−

=  

 

( 1)b w
ANOVA

MSE tp MSES
tp

+ −
=

 
MSEb = between-subjects mean square error 
MSEw = within-subjects mean square error 
tp = number of measured time points 

12.  Shadish et al. (1999)36  
3

E C
Post Post

s
ANCOVA

Y Yd
S

−
=  

 

ANCOVA 2

( 1)
(1 )( )w class

MSEa N hS
r N h−

− −
=

− −  
cov

cov ( 1)w class
Fr

F N h− =
+ − −  

MSEa = adjusted mean square error from the 
covariance analysis 
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Table 3. Estimates of sampling variance for the SMD ES in the one-group design with repeated-measures 
No. Metric Equation  

13.  Raw-score metric (Becker, 1988)19 ( )
( ) ( )

2
, 2

2
,

2 1 1var ( ) 1
3 2 1 100 1

pre post b
one g b b

Pre Post

r dn nd d
n n r c

−

   − −  = + −     − −  −     
 

14.  Change-score metric (Gibbons et al., 
1993)37 ( )

( )

2
2

2
1 1var ( ) 1

3 1
g

one g g g

dnd nd
n n c n

−

−  = + −  −   −  
 

Note. “Raw-score” implies having the measures’ variability in the observations and does not imply the unstandardized mean 

difference (UMD). 

Table 4. Estimates of sampling variances for the SMD ES from two-group designs with repeated-measures 
No. Variance estimate Equation  

15.  Raw-score metric for a total ES (Hedges, 
1981)38 ( )

( )

2
_2

_ _ 2
1 2var ( ) 1 ,

4 2
b t

two g b t b t

dNd nd
n N c N

−

−  = + −  −   −  



 *E C

E C

n nñ
n n

=
+

 

16.  Raw-score metric for a function of two ESs 
(Becker, 1988)19 var ( ) var ( ) var ( )E C

two g b one g b one g bd d d− − −= +  

17.  Change-score metric for a total ES (Morris & 
DeShon, 2002)22 

( ) ( )( )
( )

2
_2

_ , _ 2
,

1 2var ( ) 1 2 1
42 1 2

g tE
two g g t Pre Post g tE

Pre Post

dNd r nd
Nr n c N

−

  −  = + − −   −−   −    




 
18.  Change-score metric for a function of two 

ESs (Morris & DeShon, 2002)22 var ( ) var ( ) var ( )E C C
two g g one g g one g gd d d− − −= +  

Note. “Raw-score” implies having the measures’ variability in the observations and does not imply the unstandardized mean 

difference (UMD).
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Table 5. Estimates of statistics related to the unstandardized mean difference (UMD) for designs with two independent groups 
No. Metric Equation  

19.  Unstandardized mean difference (UMD) for two independent groups 𝑈𝑀𝐷 = 𝑌�𝑃𝑜𝑠𝑡𝐸 − 𝑌�𝑃𝑜𝑠𝑡𝐶  

20.  Standard error of the UMD 𝑆𝐸𝑈𝑀𝐷 = 𝑆𝑃𝑜𝑜𝑙𝑒𝑑�
1
𝑛𝐸

+
1
𝑛𝐶

 

21.  Inverse variance of the UMD 
1

𝑉𝑎𝑟𝑈𝑀𝐷
=

𝑛𝐸𝑛𝐶
𝑆𝑃𝑜𝑜𝑙𝑒𝑑(𝑛𝐸 + 𝑛𝐶) 



Methods 
General Design 

o To simulate each individual study in the simulation, we considered a within-subjects 
design with one or two groups, experimental and control.  

o The data sets from a collection of k single studies were randomly generated using 
commands from the statistical software R, version 2.14.1. Two independent normal 
distributions were simulated for conditions in part 1; and for the conditions in part 2 
that do not require repeated-measures design, R’s rnorm command was used. Two 
bivariate normal distributions were generated specifically for part 2 when repeated-
measures two-groups conditions were simulated using mvnorm R command. The 
variance-covariance matrix was manipulated with the identity matrix being a 
particular condition when groups of scores are not correlated and homogeneous 
variances equal to one are assumed between groups and time measures; the 
appropriate matrix was generated to create heterogeneous distributions for each group 
and time measure. The distributions were modified in some conditions, as we 
describe below. 

o The two bivariate normal distributions, with a homogeneous variance-covariance 
matrix,  

YE~
2

,

2
,

,
E

Pre Pre PostPre
E
Post Pre Post Post

N
σ σµ

µ σ σ

    
              

, YC~
2

,

2
,

,
C

Pre Pre PostPre
C
Post Pre Post Post

N
σ σµ

µ σ σ

    
              

,  

were generated, representing the experimental and control groups, respectively. The 
parameters for these distributions in the standardized units are E

Preµ = C
Postµ = C

Preµ = 0, 

with 𝜎𝑃𝑟𝑒,𝑃𝑜𝑠𝑡, 
2
Preσ , 2

Postσ , and E
Postµ being manipulated factors in the simulation. 

These values were permitted to remain in their unstandardized units to create a 
comparison for statistical inferences between raw and standardized conditions.  

o The necessary basic statistics (i.e., means, standard deviations, correlations) were 
estimated from the sampling data for each method using basic R commands. Thus, 
the estimates of ES and the ES sampling variance were calculated programming in R 
all the effect size equations from Tables 1, 2, and 5, as relevant. 

o The calculations for the estimations, and their sampling variances were repeated for 
each simulated study (and comparing the equations in Tables 1-5; note that the 
between-groups sampling variance is the same as the raw-score metric, that is, Table 
4, no. 15). 

o In order to evaluate the robustness of the estimates under different conditions the 
percentage bias of the estimate was calculated: 

𝐵𝑖𝑎𝑠 ��̂�� =
∑ �

𝛿�𝑗−𝛿
𝛿 �𝑅𝑛𝑠

𝑗=1

𝑅𝑛𝑠
, 

where �̂�𝑗 is the sample estimate of population parameter 𝛿 for the jth replication and 
Rns is the number of replications.  

o The efficiency of the estimates was obtained as the variability of the estimate across 
replications, 
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( )2

1

Rns

j
jVAR( )

Rns

δ δ
δ =

−
=
∑





.
 

 
• Finally, the particular formulas for estimating the sampling variances of each index of 

specific aim 2 were computed in each replication and their values averaged over the 
10,000 replications of the same condition. The average of the empirical variability of 
each index was compared to the average of the variance obtained from each sampling 
variance estimate to obtain the adjustment to the theoretical variance. 

Conditions Manipulated 

Table 6 summarizes all manipulated features in the simulation. These included: 
1. The number of studies in a meta-analysis, k = 10, 20, 50, and 100. 
2. The mean sample size (N) in the literature. The mean sample size for each generated 

meta-analysis replicated the 10th (N = 30), 40th (N = 50), and 80th (N = 80) percentiles 
of the sample sizes from HIV prevention trials in the Syntheses of HIV and AIDS 
Research Project (SHARP) meta-analytic database at the University of Connecticut, 
which summarizes over 700 trials. Three vectors of sample sizes were generated as 
[12, 16, 18, 20, 84], [32, 36, 38, 40, 104], and [62, 66, 68, 70, 134], one for each 
selected averaging 30, 50, and 80, respectively. Each vector was replicated either 2, 
4, 10, or 50 times for meta-analyses of k = 10, 20, 50, and 100. 

3. The within-study variances for experimental and control groups and at pretest and 
posttest measures were varied using ratios for experimental and control groups, 
respectively, of 1:1, 2:1, and 4:1.26,27 The variance of the experimental group was 
increased in comparison to that of the control group because increases in variability 
are more plausible when there is experimental manipulation (e.g., a psychological 
treatment) and doing so permitted clearer inferences about results.3 

4. The mean of the posttest for the experimental group, following the parametric values 
for the standardized mean difference,28δ = E

postµ = 0.25, 0.5, 0.8, The means and 
standard deviations of the scores for the experimental and control participants in each 
pseudo-study were generated assuming a variety of different distributions: both 
normal distributions and non-normal distributions: 

a. For the normal distributions, values for means and standard deviations were 
kept as following the parametric normal distributions described above. 

b. To generate non-normal distributions, the normality pattern was manipulated 
to obtain skewed distributions through use of the Fleishman29 algorithm, with 
the following values of skewness/kurtosis: 0.5/0, 0.75/0, and 1.75/3.75.. 

5. The between-studies variance, τ2, with values 0, 0.04, 0.08, 0.16, 0.32. When τ2 = 0, 
the statistical model reduces to a fixed-effects model, because there is no between-
studies variance. The selected values of τ2 are similar to those used in other 
prominent simulation studies in this literature.30-35  
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Condition manipulated specifically for Specific Aim 2 
6. The correlations between the two conditions were manipulated through the variance-

covariance matrix, where homogeneous variances equal to 1 can be assumed. The 
manipulated correlation was equal to the covariance between the two measures. The 
values were ρpre-post = 0, 0.25, 0.50, and 0.75. 
 

Table 6. Characteristics of Simulated Datasets 
Condition Levels 

Mean population effect size δ =  E
postµ = 0.25 / 0.50 / 0.80 

Relative within-study standard 
deviation for control and 
experimental groups 

σE : σC = 1:1, 2:1, and 4:1 

Sample sizes vectors 𝑛𝐶  =𝑛𝐸  = [12, 16, 18, 20, 84], [32, 36, 38, 40, 104], and [62, 
66, 68, 70, 134] 

Number of studies k = 10 / 25 / 50 / 100 
Skewness/Kurtosis 0/0, 0.5/0, 0.75/0, and 1.75/3.75 
Between-study variance τ2 = 0 / 0.04 / 0.08 / 0.16 / 0.32 
Correlation between pretest 

and posttest measuresa 
ρpre-post = 0 / 0.25 / 0.50 / 0.75 

aThis portion of the design was only for Specific Aim 2 
 

Results 
Part One: Unstandardized Versus Standardized Effect Sizes 

Overview 
Monte Carlo simulations showed that leaving the effect size (ES) index in the original metric 
(UMD) presents little bias or loss of efficiency when distributions were normal, when there is no 
heterogeneity in effect sizes, and when the variances of the experimental and control group 
means are equal; yet, to the extent that these conditions deviate, standardizing (SMD) is better. 
The standardized metric presents the least bias under all conditions and is more efficient than the 
raw metric. Both metrics suffer under high skewness and kurtosis, although the SMD less so. 

Detailed Analysis 
Bias 

Figures 1 through 5 show the primary results comparing the UMD against the SMD in terms 
of bias. As these Figures show, the SMD had less bias than did the UMD under all plotted 
circumstances. The two metrics approach the same level of bias only when skewness and 
kurtosis is minimal (Figure 1), but even here the SMD showed a slight advantage. More dramatic 
differences between the two appeared as skewness and kurtosis increase, under fixed-effects 
(τ2=0; see Figure 2), as the parametric effect size increases (Figure 3), as the mean sample size 
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increases (Figure 4), and as heteroskedasticity increases (Figure 5). (No figure for number of 
studies appears because it did not change the trends reported here.) Across these conditions, the 
UMD was more likely than the SMD to over-estimate the parametric effect size. 

Figure 1. Bias of SMD and UMD as a function of asymmetry and the between-studies variance of 
the distribution.  

  

Figure 2. Bias of SMD and UMD as a function of the between-studies variance of the distribution. 
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Figure 3. Bias of SMD and UMD as a function of the parametric effect size. 

  

Figure 4. Bias of SMD and UMD as a function of mean sample size.  
 

  
 

  Figure 5. Bias of SMD and UMD as a function of heteroskedasticity.  
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Efficiency 
Figures 6 through 10 show the primary results comparing the UMD against the SMD in 

terms of efficiency. The SMD presented more efficient estimations than the UMD under the 
same circumstances as it exhibited less bias. Specifically, the two metrics approach the same 
efficiency only when skewness and kurtosis is minimal (Figure 6), but even here the SMD 
showed a slight advantage. More dramatic differences between the two appeared as skewness 
and kurtosis increase, under increasing heterogeneity (τ2>0; see Figure 7), across all levels of the 
parametric effect size (Figure 8), across all levels of mean sample size (Figure 9), and as 
heteroskedasticity increases (Figure 10). (No figure for number of studies appears because it did 
not change the trends reported here.) Across these conditions, the UMD was a less efficient 
estimator than the SMD. The efficiency of SMD improves when the between-studies variance 
increases (τ2>0) or the sample size increases; it is not affected by the rest of the factors. 

Figure 6. Efficiency of SMD and UMD as a function of asymmetry.      

  

 

Figure 7. Efficiency of SMD and UMD as a function between-studies variance. 
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Figure 8. Efficiency of SMD and UMD as a function of the parametric effect size.  

  

Figure 9. Efficiency of SMD and UMD as a function of mean sample size.  

 

Figure 10. Efficiency of SMD and UMD as a function of heteroskedasticity.  
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Part Two: Using the SMD with Repeated Versus Independent 
Measures  

Overview 
o The raw-score metric is more convenient if we are interested in analyzing just the 

effect of an intervention, excluding effects of the maturation (i.e., when a process 
within an individual can vary due to the passage of time and/or learning 
independently of specific external events, for example, growing older, wiser, and 
more experienced). Therefore, when the raw-score metric is, used the consistency of 
the scores has not been considered and post hoc analyses including this factor as a 
moderator should not be conducted. However, the change-score metric allows us to 
know not only the change due to the intervention but also if there is some consistency 
due to a maturation effect. Examining maturation effects is very appropriate in some 
educational and even clinical interventions and if is included in the ES, then the 
consistency effect in the final efficacy results can be evaluated. (NB. “Raw-score 
metric” should not be confused with the unstandardized mean difference. The former 
gauges the standardized differences between two groups taking into account their 
variability but not the correlation between two measures. Part Two considers only the 
standardized mean difference, SMD.) 

o There are important differences among the ES estimations in raw-score and in 
change-score metric. However, all of them can be comparable and combined if it is 
possible to assume a moderate correlation (r=0.50) between pretest and posttest 
measures. 

o The new ES estimation proposed in this work, dhw, which divides the difference of the 
means, pretest and posttest, by a function of their variances is very efficient but it 
should be used only when the researcher can assume independence between the two 
measures. Therefore, this solution is more convenient to use for repeated-measures 
two-group designs focusing on intervention effects. 

o There are some slight differences between the empirical variances of raw- and 
change-score metrics when the correlation is larger or smaller than 0.5. 

o The weighted analyses using the different metrics are comparable because the 
differences due to the correlation factor are corrected using the appropriate weights in 
each case. Thus, the correlation factor should be included for the sampling variance 
but not for the ES estimation in raw-score metric and should not be included for the 
sampling variance but for the ES estimation in change-score metric. Therefore, those 
ES values in raw-score metric with a greater sampling variance will have less weight 
in change-score metric but the ES values will be larger than the one in raw-score 
metric if the correlation is larger than 0.5. In the same way, the weights will be larger 
in raw-score metric ESs when the correlation is larger than 0.5 but the ES values will 
be smaller than those in change-score metric.  

o Therefore in order to be able to integrate both metrics, the sampling variance of the 
ES estimations in raw-score metric must include the factor with the correlation, but 
not the sampling variance estimation for change-score metric. However, if we can 
assume that the correlation is 0.5, both equations to estimate the sampling variance as 
it was for the ES estimations are comparable. 
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o For the repeated-measures two-groups design, the sampling variance can be estimated 
using two equations depending on the metric of the ES. The main difference between 
them is the inclusion or not of the correlation factor. The one for change-score metric 
includes the correlation factor but not the one in raw-score metric. The performance 
of those two equations presents the same trends as those for the one-group within-
subjects design. When ρ < 0.5 the one for change-score metric is better adjusted than 
the one for raw-score metric, which is better, regardless of the ES index used to 
calculate it, when ρ > 0.5. They are comparable if it is possible to assume that the 
correlation is equal to 0.5. 

Detailed Analysis 
One-group within-subjects design 
Bias 

Figure 11 shows the bias of the different indexes calculated as the difference between the 
mean of each estimation and the parametric ES in raw metric, δraw, over the 10,000 replications 
and assuming normality of the distribution. Thus, positive values reflect an overestimation of this 
particular parameter, whereas negative values imply an underestimation of it. The trends were 
very similar as the sample size increases, so an average of the sample size conditions is used to 
present each ES index across each manipulated correlation value. 

 

Figure 11. Bias as a function of the correlation parameter of the ES indexes.  

 
Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb, Hedges’s standardized mean 
difference using the within-study degrees of freedom=dhw, standardized mean difference in raw-score metric from td=dtra, the 
standardized mean difference in change-score metric from td=dtch, Becker’s standardized mean difference=db; Gibbons’s 
standardized mean difference=dg. 
 

The ES indexes in raw-score metric do not present bias, dhb, dtra, and db, except for dhw, 
which underestimates the parametric ES in raw-score metric and when the ES is estimated 
assuming the two groups of scores have a null correlation, ρ = 0, which is similar in all the 
conditions (see Appendix B for more detail). However, the ES indexes in change-score metric, dg 
and dtch, which incorporate the effect of the correlation, underestimate the parametric ES in raw-
score metric when ρ < 0.5.  
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It is possible to observe the interaction of all the ES estimations, except dhw, when ρ = .5. 
They are estimating the same parameter for this particular condition, so in this case dhb, dtra, dtch, 
db, and dg are unbiased. 

 
 

Efficiency  
In terms of the theoretical variance, the ES with the least variability and therefore most 

efficient is dhw across all simulated conditions, then dg and dtch, both presenting the same trend, 
as Figure 12 shows.  

Figure 12. The efficiency as a function of the correlation parameter of the ES indexes  

 
Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb, Hedges’s standardized mean 
difference using the within-study degrees of freedom=dhw, standardized mean difference in raw-score metric from td=dtra, the 
standardized mean difference in change-score metric from td=dtch, Becker’s standardized mean difference=db; Gibbons’s 
standardized mean difference=dg. 

 
The variability of dg and dtch are almost unaffected by increasing the assumed correlation 

between pre- and post-test, although it increases slightly as the correlation increases. The 
variability of dhw begins very similar to dg and dtch, but the efficiency of the first one improves as 
the correlation increases. Finally, the worst adjustment is for db, followed by dtra and dhb, 
however, their variability decreases as the correlation increases, obtaining better efficiency than 
dg when ρ > 0.5. Although efficiency is similar for all alternatives when the correlation is 0.5, dg 
and dtch are more variable than any other when the correlation is larger than 0.5. As statistical 
theory predicts, the performance of all ESs, in terms of efficiency, improves as the sample size 
increases. Finally, in general, the correlation affects the empirical variance of the estimators even 
for those in raw-score metric. As the correlation increases, there is less variability in the indexes. 

 
The theoretical variance adjustment 

Related to the difference between the empirical and the theoretical variance, in general, 
Figure 13 shows how the correlation parameter of the ES indexes relates to adjustments to the 
theoretical variance. The least biased estimations of the variance are dg and db. The difference 
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correlation is larger than 0.5. However, the theoretical variance adjustment of db always 
decreases as the correlation increases. The worst adjustment is for dhb and then for dhw; both 
present a difference that decreases as the correlation increases. Finally, db and dg have well-
adjusted estimations of the sampling variance when n > 100. 

Figure 13. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes.  

 

Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb, Hedges’ 
standardized mean difference using the within-study degrees of freedom=dhw, Becker’s standardized mean 
difference=db, and Gibbons’s standardized mean difference=dg. 
 

If the theoretical variance is calculated for dhw and db without including the correlation factor, 2 
(1 – ρ), but using the df = n – 1 and ñ = n, dhw_nonr and db_nonr, they present opposite patterns to 
their correspond versions including the correlation factor, as Figure 14 illustrates.  

Figure 14. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes.  
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Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb; Hedges’s 
standardized mean difference using the within-study degrees of freedom=dhw; Hedges’ standardized mean difference 
using the within-study degrees of freedom without including the correlation factor 2(1 – r) in its equation=dhw_nonr; 
Becker’s standardized mean difference=db; Becker’s standardized mean difference without including the correlation 
factor 2(1 – r) in its equation=db_nonr; and Gibbons’ standardized mean difference=dg. 

Two-Group Repeated Measures Design 
Bias 

In Figure 15, the same trends as in Figure 11 are presented for the correspondent ES indexes 
of two-group repeated-measures design, dhb, db, dhw and dg. The two first are estimating the 
parametric ES in raw-score metric, so they are not presenting bias, in comparison to the constant 
bias of dhw across conditions because it is not affected by the correlation but it is not estimating 
their parametric change-score ES (the mean of the bias through all conditions is bias(dhb) = 
0.0016; bias(db) = 0.000; bias(dhw) = -0.1473). The dg ES presents the same result mentioned 
under one-group repeated-measures design, which is underestimating and overestimating the 
parametric ES depending on having ρ < 0.5 or ρ > 0.5, respectively. 

Figure 15. The bias as a function of the correlation parameter of the ES indexes.  

 

Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb; Hedges’s 
standardized mean difference using the within-study degrees of freedom=dhw; the Becker’s standardized mean 
difference=db; the Gibbons’ standardized mean difference, dg, the standardized mean difference using the Shadish’s 
pool standard deviation= ds1; the standardized mean difference from the ANOVA data, ds2; and the standardized 
mean difference from ANCOVA data=ds3. 
 

The three new ES indexes presented for two-groups design are those calculated from 
ANOVAs, ds1 and ds2, and one from ANCOVA, ds3. The performance of the two first is the same 
as those estimating a parametric ES in raw-score metric, so they do not present bias. However, 
the third one underestimates the parameter but improves as the correlation increases.  
 
Efficiency 

In general, in terms of efficiency the best estimator is dhw and then ds1, ds2, ds3, and dg are 
very similar if correlation is lower than 0.5. However, when ρ > 0.5 the efficiency of dg increases 
drastically, as it was shown in one-group design. The variability for dhb and db are very similar, 
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being slightly larger for db when ρ = 0, they interact when ρ = 0.5 being from that point the 
variability of dhb slightly larger than db (see Figure 16). 
 

Figure 16. Efficiency as a function of the correlation parameter of the ES indexes.  

 
Note: Hedges’s standardized mean difference using the between-studies degrees of freedom=dhb; Hedges’s standardized mean 
difference using the within-study degrees of freedom=dhw; Becker’s standardized mean difference=db; Gibbons’s standardized 
mean difference=dg; standardized mean difference using the Shadish pooled standard deviation=ds1; standardized mean 
difference from the ANOVA data=ds2; and standardized mean difference from ANCOVA data=ds3. 
 
The theoretical variance adjustment 

Figures 17 and 18 present the differences between the sampling variance estimates and the 
actual sampling variance of the effect size index. In Figure 17, the estimates using a continuous 
line are calculated as the variance of an ES, those with a dashed line are obtained as a variance 
compound of two variances, one for the ES of each independent group. 

Figure 17. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes.  

  
Note: Hedges’s standardized mean difference using the between-studies degrees of freedom, dhb, Hedges’ standardized mean 
difference using the within-study degrees of freedom, dhw, Becker’s standardized mean difference, db, Gibbons’ standardized 
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mean difference, dg, standardized mean difference using the Shadish pooled standard deviation, ds1, standardized mean difference 
from the ANOVA data, ds2, and the standardized mean difference from ANCOVA data, ds3; note that the variance calculated for a 
total ES as the difference between the ES for each group, experimental and control, is denoted with _t suffixes. 

Figure 18. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes.  

 
Note: Hedges’s standardized mean difference using the within-study degrees of freedom, dhw; Becker’s standardized mean 
difference, db; Gibbons’s standardized mean difference=dg; note that the inclusion or not of the correlation factor, 2(1-ρ), is 
denoted as _r and _nonr, respectively, in the suffix of these terms 
 

The indexes that are adjusted most through all the conditions without being affected by the 
magnitude of the correlation are dhb and db_total, and dhw_t . The adjustments for the theoretical 
variance of dg_t, ds1, ds2, and ds3 are affected by the magnitude of the correlation between pre- and 
post-tests (ds2 is not considered in Figure 17 because it has exactly the same performance as ds1). 
The theoretical variance is closer to the empirical variance for dg_t, ds1, and ds2 as the correlation 
increases, but it is slightly further for ds3 when ρ > 0.5. The considerably worse performance is 
achieved by those estimations of the sampling variance that are a composite of two variances, 
one for the experimental and one for the control group. 

In Figure 18, the sampling variance estimations for a total ES in different metrics are 
compared using or not using the correlation factor, 2(1 – ρ). The performance has a good 
adjustment almost without being affected by the increase of the correlation for all the estimations 
and they are very similar when they do not include the correlation factor. The only one that 
improves slightly as the correlation decreases is the estimation of the sampling variance using dg. 
However, when the correlation factor is included in the equation all of them have similar trends, 
they get better performance if ρ < 0.5 and worse performance when ρ > 0.5. Finally, if ρ = 0.5 
the inclusion or not of the correlation factor has little effect across the different equations. 

0.00

0.01

0.02

0.03

0.04

0 0.25 0.5 0.75

Th
eo

re
tic

al
 V

ar
ia

nc
e 

A
dj

us
tm

en
t 

Correlation 

dhw_t_nonr

dhw_t_r

db_t_nonr

db_t_r

dg_t_nonr

dg_t_r



26 

Discussion 
This report analytically evaluates two controversial and related topics in meta-analytic methods 
using Monte Carlo simulation techniques. The first is to determine what effect size metric should 
be used when trials assess an outcome on the same measures. The second is to determine the best 
estimates of the standardized effect size and its variance estimates when the comparisons are 
derived from a repeated-measures or between-groups design.  
 
Choice of Metric 

Although several statistical methods exist to estimate comparisons of groups at one or more 
points (Tables 1 to 4), none provide unbiased estimations and, before the current report, the 
circumstances under which they produce the most optimal statistical inferences has been 
unknown. The current results demonstrate that the standardized version of effect size 
outperforms the unstandardized version under a broad set of conditions (Table 6) in terms both 
of bias (Figures 1-5) and of efficiency (Figures 6-10). Thus, standardized effect sizes can be 
recommended under most conditions. The standardized mean difference performs much better 
when within-study variability is large, when parametric assumptions are poorly met, and when 
study sample sizes are small. Table 6 summarizes the recommendations that the current 
simulation supports in terms of effect size metric and the best instantiations of the standardized 
mean difference for particular types of designs and inferential circumstances. 

The fact that the current results support the use of the standardized mean difference even 
when it is possible to use the unstandardized version might on the surface imply that that clinical 
interpretations will grow more difficult even while statistical inferences grow clearer and 
cleaner. Of course, most stakeholders can more easily interpret a 10 mmHg greater drop in blood 
pressure or a $100 reduction in the cost of care than the equivalent result on a standardized effect 
size metric. There are at least two solutions to this problem. The first solution is quantitative and 
entails converting final results from in the standardized mean difference metric to their 
equivalent unstandardized mean differences. One simply multiplies the standardized mean 
difference by the standard deviation. Of course, standard deviations can and do vary widely 
between studies, which implies that is valuable to meta-analyze the relevant standard deviations 
in order to determine which value or values are best used in such conversions. Many factors 
might affect which standard deviation is presumed to describe a particular inferential situation. 
Investigators may have selected participants within a narrow range on the dependent measure, 
which artificially restricts the standard deviation. Presumably such standard deviations are of 
little use in setting a standard. Scaling issues are also a consideration: Other factors equal, 
standard deviations will grow smaller as values near the low or high extremes of a particular 
measure (e.g., rating scales); standard deviations grow larger across levels of a measure that has 
infinity at one end (e.g., mmHg in blood pressure studies).6 Understanding when the standard 
deviation is larger or smaller thus facilitates making accurate clinical inferences.
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Table 7. Recommendations for Effect Size Metric and Relevant Formulas 

Design Type Inferential Circumstances 
Best Effect Size 

Statistic Source Equation 
Two-group 
comparison 
without repeated 
measures 

For nearly all inferential 
circumstances involving a 
comparison of two groups on 
one measure.  

SMD dhb,Table 2, 
No.  6 Hedges (1981)38 ( 2)

E C
Post Post

hb
Pooled

Y Yd c N
S
−

= −  

One-group 
repeated 
measures 

When attempting to describe 
the magnitude of change 
without controlling for the 
correlation between the 
repeated measures 

SMD dtra, Table 
1, No. 1  Glass (1981)3  ,

1 2(1 )tra d Pre Postd t r
n

= −  

SMD db, Table 1, 
No. 3 Becker (1988)19  ( 1) Post Pre

b
Pre

Y Yd c n
S
−

= −
 

One-group 
repeated 
measures 

When attempting to examine 
the magnitude of change 
controlling for the correlation 
between the repeated 
measures 

SMD dtch, Table 
1, No. 2 Rosenthal (1991)9 1

tch dd t
n

=
 

SMD dg, Table 1, 
No. 4

 

Gibbons et al. (1993)37

 
( 1) Diff

g
Diff

Y
d c n

S
= −

 

Two-group 
comparisons with 
repeated 
measures 

When attempting to examine 
the magnitude of change 
without controlling for the 
correlation between the 
repeated measures 

SMD db, Table 2, 
No. 7 

Becker (1988)19 
( 2)

E E C C
Post Pre Post Pre

b E C
Pre Pre

Y Y Y Yd c N
S S

 − −
= − − 

    

SMD dhw , Table 
2, No. 9 

Huedo-Medina & 
Johnson ( 2)

E E C C
Post Pre Post Pre

hw E C
within pool within pool

Y Y Y Yd c N
S S− −

 − −
= − − 

    

 

Two-group 
comparisons with 
repeated 
measures 

When attempting to examine 
the magnitude of change 
controlling for the correlation 
between the repeated 
measures 

SMD dg, Table 2, 
No. 8 

Gibbons et al. (1993)37 
( 2)

Diff Diff

E C
Diff Diff

g E C

Y Y
d c N

S S

 
= − − 

    

SMDs ds2 or ds3, 
Table 2, Nos. 11 

and 12 
Shadish et al. (1999)36 

2

E C
Post Post

s
ANOVA

Y Yd
S
−

=
 

3

E C
Post Post

s
ANCOVA

Y Yd
S

−
=  
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The second solution for clinical interpretation hinges on effect size standards. Specifically, 
Cohen28,39 tentatively proposed some guidelines for judging effect magnitude, suggesting “that 
medium represents an effect of a size likely to be visible to the naked eye of a careful observer” 
(Cohen,24 p. 156). Thus, if a standardized mean difference exceeds 0.50, then it is likely to be 
readily noticeable to the careful practitioner.40 If it is smaller, it is unlikely to be noticeable 
without the aid of statistics. It is worth noting that these clinical interpretation suggestions also 
apply to meta-analyses in which individual studies take observations on different measures, 
when the only conventional recourse is to use a standardized effect size. 
 
Optimal Estimations of the Standardized Mean Difference Effect Size (and Its 
Sampling Variance) 

Tables 1 to 4 show current methods to obtain an effect size and a sampling variance estimate 
for repeated-measures and two-groups designs. These solutions either include the correlation 
between pre- and post-test 3,21,36 or exclude it.9,19,36,37 Despite the disagreement about use of the 
correlation in calculating the ES, all except Gibbons et al.’s37 solutions use the correlation in 
estimating the variance of ES for subsequent weighted analyses. Finally, these solutions rarely if 
ever distinguish between change- and raw-score metrics; the latter always assumes a .5 
correlation between measures in estimating the ES and its variance. The effect size in change-
score metric can be defined as the mean change due to treatment compared to the variability of 
change scores and the effect size in raw-score metric as the mean difference between conditions 
compared to a pooled variability of scores within each condition or to the variance of the original 
scores without having any intervention.  

The second takes into account only the change, without considering the variability of this 
change, and the first considers the change and the consistency of it. If the variability of this 
change is high, the ES in change-score formulation will be smaller than it will be in the raw-
score formulation, that is considering just the between groups variability implying that the 
correlation between the two conditions is 0.5. Thus, the raw-score ES can be misleading. 
However, if the variability of the change is small, the ES estimation will be higher than if just the 
ES in raw-metric is considered because of the consistency. Consistency implies that for all the 
subjects, a similar change has been produced. Therefore, those metrics will report different 
definitions of the ES because of the different standard deviations that they use.  

There are different estimates of the sampling variance depending on the design (Tables 3 and 
4); all present a good adjustment to the theoretical variance under most circumstances. Yet, for 
two-groups designs with repeated measures, there is an advantage to use the equations with the 
total effect size as a component (i.e., Table 4, equations 15 and 17). These performed superior to 
versions that used separate variance estimates for the two compared groups to create the total 
sampling variance (i.e., Table 4, equations 16 and 18).  

We can conclude based on our results that selections of a formula for repeated measures can 
have large effects on statistical inferences. The parametric repeated-measures ES is defined as 
the difference between the means of the post- and pre-test divided by a standard deviation. The 
particular standard deviation chosen in calculating the ES index will also create some 
differences. Those differences can be corrected using the appropriate weights in each case, using 
the sampling variance estimate for change- or raw-score metric, then effect sizes from different 
designs can be integrated. It is worth mentioning that solutions for repeated measures effect sizes 
were most optimal when the correlation between repeated observations was 0.50; to the extent 
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that actual observed correlations differ from this value, statistical inferences are likely to be sub-
optimal, especially with some of the competing equations (Tables 1 and 2). 
 
Limitations and Future Directions 

The present study examined the performance of numerous estimators of effect size across 
widely diverse circumstances but it cannot evaluate all possible circumstances. Although the 
methods were intended to describe the conditions that most often appear in meta-analyses of 
health-related research, it is possible that important conditions have been omitted from the 
current simulations. For example, trials sometimes have far larger samples than the current 
simulations examined. Yet, because sample size had little role in results, this concern would 
seem to be abated. Moreover, in examining circumstances with heterogeneity and with unequal 
variances, the current findings would seem highly germane to many meta-analyses related to 
health. 

The current investigation also leaves some questions without complete answers. Future 
investigations could examine alternative solutions beyond those in Table 5 for gauging the 
magnitude of effect sizes in the original metric. For example, as implied in the preceding sub-
section, it may be fruitful to model the standard deviations in trials. Once the population values 
are estimated they could be used in place of the observed standard deviations in individual 
studies to weight results. This solution might correct many of the deficiencies the current study 
identified. (Or, the population standard deviations could replace the observed standard deviations 
in calculating the standardized mean difference.) Another solution could be taking previous 
transformations of the unstandardized metric and evaluating which ones are the most unbiased 
and efficient depending on different simulated conditions. Similarly, in comparing the 
unstandardized effect size to the standardized one, the current work examined only one version 
(see Table 5). One popular version that was not examined in the current analysis is the 
unstandardized mean gain score.16  

The unstandardized difference’s poor performance in the current analysis leaves little faith 
that it will fare any better in the gain score arena, but only by doing the requisite work can this 
possibility be confirmed. Similarly, the current finding that the standardized mean difference 
performs better than the unstandardized one under unequal variances implies but does not 
directly show that differing measure variances across studies will make the unstandardized mean 
difference perform more poorly. Moreover, the current results showed that the standardized 
mean difference performs better under heterogeneity than its unstandardized counterpart; the 
implication is that moderator testing (viz. sub-group analysis or meta-regression) will also 
exhibit less bias and greater efficiency when the effect size is standardized rather than 
unstandardized. This possibility should be evaluated in a future simulation. Another important 
possibility to evaluate in a future study are the different ratios of the mean difference versus 
pooled standard deviation; the conditions manipulated in the current study could statistically 
benefit the standardized version more than the unstandardized counterpart. Finally, also valuable 
would be further work examining how visible a “medium” effect size is to “careful observers” 
might also be in order, although this work would likely have to be sophisticated about controlling 
many different factors (e.g., anchoring effects).   
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