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A Bayesian Missing Data Framework for Mixed 
Multiple Treatment Comparisons 
 
Structured Abstract 
 
Objectives: Bayesian statistical approaches to mixed treatment comparisons (MTCs) are 
becoming more popular due to their flexibility and interpretability. Many randomized clinical 
trials report multiple outcomes with possible inherent correlations, but there is little previous 
work in modeling them statistically. We build on existing hierarchical modeling and missing data 
methods to obtain novel and improved Bayesian approaches to MTCs for multiple continuous 
outcomes.  
 
Data Sources: We reviewed randomized clinical trials published in English after 1979 that 
examined physical therapy interventions for community-dwelling adults with knee pain 
secondary to osteoarthritis (OA). After screening, 84 randomized trials met the 
inclusion/exclusion criteria, reporting variously on knee pain, disability, quality of life, and 
functional outcomes. 
 
Methods: After a review of existing hierarchical Bayesian methods for MTCs with single 
continuous outcome, we introduce novel Bayesian approaches for multiple continuous outcomes 
(here, pain and disability) by generalizing existing models to treat missing data the same as 
unknown parameters and to incorporate correlation structure between outcomes. We also 
propose a new arm-based model that is less constrained than existing models. We produce 
Bayesian treatment ranks based on a sensible scoring system incorporating weights for the 
multiple outcomes. We also offer simulation studies to check our method’s Type I error, power, 
and the probability of incorrectly selecting the best treatment.  
 
Results: While our missing data approaches had better power and Type I error than previous 
Bayesian methods, ignoring missing data or correlation between outcomes can produce biased 
MTC estimates, leading to high Type I error and low power, especially when the data from 
missing treatment arms depend on the data from the observed arms. In our OA data analysis, 
while all the models gave similar goodness of fit, they yielded different best treatments, with 
aerobic exercise emerging as best according to the older models, but proprioception exercise 
being preferred by our weighted ranking models. Still, few statistically significant differences 
between treatments were observed. 
 
Conclusions: Our missing data approaches appear preferable for incorporating missing data and 
correlation structure in MTC modeling, and thus obtaining more precise and robust parameter 
estimates.  
 
Key Messages 

• Since researchers often choose study arms based on previous trials, it pays to consider 
any unobserved treatment arms in an MTC as missing data and subsequently use the 
Bayes’ Rule to learn about the treatments’ relative relationships. This makes it easier to 
assign prior distributions on random effects and delivers better statistical inference. 
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• Our arm-based models are less constrained than previous contrast-based models and can 
thus yield parameters with more straightforward interpretations, especially in the 
presence of correlations between outcomes. 
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Introduction 
 Mixed treatment comparisons (MTCs) are meta-analytic statistical techniques that 
incorporate the findings from several studies, none of which compared all the treatments at one 
time, to address the comparative effectiveness and safety of interventions accounting for all 
sources of data.1, 2 In the MTC data framework, since few head-to-head comparisons are 
available, we must rely on indirect comparisons, typically each investigated treatment against a 
control or a standard treatment. The biggest assumption in MTCs is exchangeability among 
studies; that is, any ordering of the true treatment effects across studies is equally likely a priori. 
 Bayesian hierarchical statistical meta-analysis for MTCs with a single binary outcome has a 
relatively long history in the literature.3-7 However, compared to the binary outcome setting, 
there are relatively few articles on Bayesian MTCs for continuous outcomes. We found only one 
published paper discussing a simple Gaussian Bayesian hierarchical model using the standard 
approach, and this paper considers only a single outcome.8 
 Our interest in Bayesian MTC methods for multiple continuous outcomes is motivated by a 
systematic literature review that investigated the effectiveness of physical therapies on chronic 
pain secondary to knee osteoarthritis (OA) for community-dwelling adults.9 OA treatments aim 
to reduce or control pain, improve physical function, prevent disability, and enhance quality of 
life. We recorded means of measured pain, disability, function, and quality of life scores 
associated with various physical therapy interventions from randomized studies.  
 As our OA data contain many studies reporting multiple outcomes, and measured on the 
same subjects, correlations across arms and outcomes are likely, but this case has not yet been 
discussed in the literature. For example, similar types of drugs or physical therapies may tend to 
behave similarly inducing correlated results, and multiple outcomes also can induce correlations 
(e.g., subjects with severe pain would be more likely to have disability). Generally, in meta-
analysis, we cannot estimate within-study correlations because we have only aggregated data.10 
However, we can numerically estimate the correlation between arms or outcomes across studies. 
 Most randomized controlled trials (RCTs) compare only two or three treatments, including a 
control group, due to limited resources. This results in extremely sparse data for MTCs when 
used across all possible treatments; missingness rates of 70 to 80 percent are not uncommon. As 
a result, Lu and Ades’s approach,7 a standard MTC model, uses only the observed data. However, 
we can borrow strength from those missing data after imputing them in a Bayesian hierarchical 
model that accounts for between-arm and outcome correlations using Markov chain Monte Carlo 
(MCMC) algorithms. Especially when the missingness does not occur randomly but depends on 
some observed or unobserved information, ignoring such missing data can cause biased 
estimators,11 as we show below using simulation. 
 In this report, we review existing MTC models and propose novel Bayesian missing data 
approaches to combine multiple continuous outcomes. The main objectives are to (1) impute 
unobserved arms by considering them as unknown parameters from which strength can be 
borrowed, (2) incorporate between-arm or between-outcome correlations, and (3) introduce an 
arm-based approach having less restricted model variances than contrast-based. We also rank the 
treatments with a sensible scoring system incorporating such multiple outcomes. We include a 
simulation study to investigate the performance of our methods in terms of Type I error, power, 
and the probability of incorrect selecting the best treatment. Finally, we apply our models to the 
OA data and interpret our findings.  
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Methods 
OA Data 
 We reviewed publications in English after 1979 that examined physical therapy interventions 
for community dwelling adults with knee pain secondary to osteoarthritis. A total of 4,266 
references were retrieved.9 After screening out studies that contained no eligible exposure, target 
population, outcomes, or associative hypothesis tested, 422 therapeutic agents were included in 
our review. One hundred ninety three RCTs reported knee pain, disability, quality of life, and 
functional outcomes after physical therapy interventions; 84 of those met the study 
inclusion/exclusion criteria given in the next paragraph. Because definitions of physical therapy 
interventions and outcomes varied dramatically among studies, only a small proportion of 
comparisons met these criteria.  
 Inclusion/exclusion criteria involved the following aspects. First, comparators should include 
sham stimulation (placebo), usual care (education), no active treatment, or other therapy 
intervention. Eligible patient-centered outcomes were knee pain, disability, quality of life, 
perceived health status, and global assessments of treatment effectiveness. The target population 
was adults with knee pain secondary to knee osteoarthritis in outpatient settings, including home-
based therapy. Chronic OA was defined as meeting diagnostic criteria and having symptoms of 
OA for >2 months. We excluded populations with knee OA who had knee arthroplasty on the 
“study limb” within 6 months before the study, osteonecrosis, acute knee injuries, inflammatory 
arthritis, arthritis secondary to systemic disease, and physical therapy treatment combined with 
drug treatments. 
 For the present analysis, we selected the pain and disability outcomes as primary and 
secondary outcomes, respectively, resulting in the inclusion of 54 RCTs. Table 1 displays the 
data from these 54 RCTs, comprising aggregated continuous outcomes (sample mean and 
standard deviation (SD)) measuring the level of pain and disability after physical therapies using 
various standard scores. The OA data compare eight physical therapies (low intensity diathermy, 
high intensity diathermy, electrical stimulation, aerobic exercise, aquatic exercise, strength 
exercise, proprioception exercise, and ultrasound treatment) and three reference therapies (no 
treatment, placebo, and education). Under proprioception exercise, we also included tai chi and 
balance exercise. Most studies reported treatment outcomes at a single followup time, but when a 
study investigated outcomes at multiple followup times, we selected the one most commonly 
reported for that treatment. To measure the pain outcome, the Western Ontario MacMaster 
(WOMAC), Visual Analogue Scale (VAS), Arthritis Impact Measurement Scale (AIMS), and 
other standard scores were used. For the disability outcome, the measurement tools included the 
WOMAC total, Medical Outcome Study (MOS) 36-Item Short-Form Health Survey (SF-36 
physical function), AIMS, Health Assessment Questionnaire (HAQ), and Knee Injury and 
Osteoarthritis Outcome Score (KOOS). Because the scores’ different scales make their values 
incomparable, we standardized the mean scores to range from 0 to 10, where small values 
indicate better condition, and called this the re-scaled score. We also recalculated the SDs based 
on the transformation of the mean score, and call this the re-scaled SD. We remark that we have 
no reason to doubt the appropriation of linear retransformation here, but our methods apply 
equally well under nonlinear transformations if more appropriate clinically. 
 Among the 54 studies, 51 measure the pain outcome, 26 measure the disability outcome, and 
23 include both outcomes. Figure 1 exhibits the trial network among therapies for each outcome. 
The size of each node represents the number of studies investigating the therapy, and the 
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thickness of each edge implies the total number of samples for the relation. The numbers on the 
edges indicate the numbers of studies investigating the relation. For example, in the pain 
outcome, there are five studies investigating the relation between no treatment and 
proprioception exercise, but this line is thinner than the line between education and strength 
exercise, though it has only three studies. The network features are similar in both outcomes, but 
we have limited information on the disability outcome, with fewer connections between 
therapies and smaller total sample sizes overall than for the pain outcome. 

Existing Lu and Ades-Style Model  
 Suppose we are comparing K treatments from I studies in terms of L multiple outcomes. For 
the continuous outcome, we assume that the data for a specific outcome from each study follow a 
normal distribution. That is, 

𝑦�𝑖𝑘𝑙 ~ 𝑁 �∆𝑖𝑘𝑙 ,
𝜎𝑖𝑘𝑙
2

𝑛𝑖𝑘𝑙
� , 𝑖 = 1, … , 𝐼,𝑘 = 1, … ,𝐾, 𝑙 = 1, … , 𝐿 ,  

where 𝑦�𝑖𝑘𝑙 is the sample mean of the measurements, ∆𝑖𝑘𝑙 is the unknown true population mean, 
𝜎𝑖𝑘𝑙2  is the known sample variance, and 𝑛𝑖𝑘𝑙 is the number of subjects in the 𝑘𝑡ℎ treatment arm 
with 𝑘 = 1 for the reference arm (i.e., no treatment in our OA data) from the 𝑖𝑡ℎ study with 
respect to the 𝑙𝑡ℎ continuous outcome.  

Fixed Effects Model  
 For meta-analysis, a fixed effects model, assuming no variability between studies, can easily 
be implemented. Following Lu and Ades,6, 7 the model can be written as  

∆𝑖𝑘𝑙=  α𝑖𝐵𝑙                     𝑖𝑓 𝑘 = 𝐵,                 
∆𝑖𝑘𝑙=  α𝑖𝐵𝑙 +  𝜂𝐵𝑘𝑙      𝑖𝑓 𝑘 ≠ 𝐵, 

 
(1) 

where B indicates the baseline treatment in each study 𝑖. Here, α𝑖𝐵𝑙 is the effect of baseline 
treatment and 𝜂𝐵𝑘𝑙 is the mean difference between treatment 𝑘 and the baseline treatment (B) for 
outcome 𝑙 in study 𝑖. We define 𝑑𝑘𝑙 as the mean difference between treatment 𝑘 and the 
reference treatment for outcome 𝑙, with 𝑑1𝑙 = 0. Thus, 𝜂𝐵𝑘𝑙 can be calculated as 𝑑𝑘𝑙 −  𝑑𝐵𝑙, and 
we infer the treatment effects in terms of 𝑑𝑘𝑙; that is, we assign a prior distribution to 𝑑𝑘𝑙, rather 
than 𝜂𝐵𝑘𝑙. We denote this model as the Lu and Ades (LA)-style fixed effects model (LAFE). In 
this approach, it is hard to interpret the baseline treatment effect α𝑖𝐵𝑙 because not all studies have 
the same baseline treatment.  

Random Effects Model 
 Next, in order to allow variability between studies, we introduce random effects, 𝛿𝑖𝐵𝑘𝑙, 
replacing the 𝜂𝐵𝑘𝑙. Specifically model (1) is respecified as 

∆𝑖𝑘𝑙=  𝛼𝑖𝐵𝑙                     𝑖𝑓 𝑘 = 𝐵,                 
∆𝑖𝑘𝑙=  𝛼𝑖𝐵𝑙 +  𝛿𝑖𝐵𝑘𝑙     𝑖𝑓 𝑘 ≠ 𝐵, 

 
(2) 

where we can assume homogeneous variance across random effects for all arms, i.e., 
𝛿𝑖𝐵𝑘𝑙 ~ N(𝑑𝑘𝑙 −  𝑑𝐵𝑙 , 𝜏2). (3) 

Here, 𝛿𝑖𝐵𝑘𝑙 is 0 when 𝑘 = 𝐵, and τ is the standard deviation of the random effects. We denote 
this model as the Lu and Ades-style homogeneous random effects model (LAREhom). For multi-
arm trials, Lu and Ades restrict the correlation between arms to 0.5, and the 𝛿𝑖𝐵𝑘𝑙 in (3) is 
replaced by a vector 𝜹𝑖𝑙 that follows a multivariate normal distribution with dimension equal to 
the number of arms in study 𝑖 minus one, for each outcome 𝑙. 
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Allowing for Missing Data and Correlations Between 
Outcomes 

Contrast-based Approach 
 We denote a model that parameterizes relative effects (e.g., the 𝜂𝐵𝑘𝑙 and 𝛿𝑖𝐵𝑘𝑙 in (1) and (2), 
respectively) as a contrast-based (CB) model. Lu and Ades-style models use such a CB approach. 
Note that the mean effect difference between treatment 𝑘 and baseline treatment in terms of 
outcome l (𝑑𝑘𝑙) is the parameter of interest in CB models. In MTCs, it is common that the 
number of treatments compared in the 𝑖th study is less than the complete collection of K 
treatments. Since each study contributes to the likelihood for a different set of treatments, using 
the observed measurements only can complicate estimating the covariance matrix for the 𝜹𝑖𝑙, and 
lead to difficulties in prior assignment and parameter inference. In addition, it is plausible that 
researchers select study arms based on the trials conducted previously, what statisticians call 
“noningnorable missingness.” In this case, ignoring the missing treatment arms can potentially 
lead to biased parameter estimates.11 
 To remedy this, suppose we assume that all studies can in principle contain every arm, but in 
practice much of this information is missing for various reasons. Under this assumption, we can 
always have a common (though possibly missing) baseline treatment, 𝐵 = 1, and the distribution 
for the random effects 𝛿𝑖𝐵𝑘𝑙 in (3) can be replaced with a matrix form as follows: 

𝜹𝑖𝑙 ~ 𝑀𝑉𝑁(𝒅𝑙, 𝚺𝑙𝑇𝑟𝑡), (4) 
where 𝜹𝑖𝑙 =  (𝛿𝑖12𝑙, … , 𝛿𝑖1𝐾𝑙)𝑇,  𝒅𝑙 =  (𝑑2𝑙, … ,𝑑𝐾𝑙)𝑇, and 𝚺𝑙𝑇𝑟𝑡 is a (𝐾 − 1) × (𝐾 − 1) 
covariance matrix for 𝑙 = 1, … , 𝐿. Note that since 𝛿𝑖11𝑙 and 𝑑1𝑙 are always 0, they are not 
included in 𝜹𝑖𝑙 and 𝒅𝑙. We refer to this model as a contrast-based random effects model 
assuming independence between outcomes (CBRE1). In this approach, we better incorporate all 
sources of uncertainty by considering unobserved arms as missing data to be imputed in MCMC 
algorithm. 
 To allow correlations among outcomes, the distribution of 𝜹𝑖𝑙 in (4) needs to be respecified 
to  

𝜹𝑖𝑘 ~ 𝑀𝑉𝑁(𝒅𝑘, 𝚺𝑘𝑂𝑢𝑡), (5) 
where 𝜹𝑖𝑘 =  (𝛿𝑖1𝑘1, … , 𝛿𝑖1𝑘𝐿)𝑇, 𝒅𝑘 =  (𝑑𝑘1, … ,𝑑𝑘𝐿)𝑇, and 𝚺𝑘𝑂𝑢𝑡 is a 𝐿 × 𝐿 covariance matrix for 
𝑘 = 2, … ,𝐾. In this model, we assume independence between arms but incorporate the 
correlation structure between outcomes through 𝚺𝑘𝑂𝑢𝑡. We call this model CBRE2. Alternatively, 
we can also use the same 𝚺𝑂𝑢𝑡 for all 𝑘, if such an assumption is sensible.  

Arm-based Approach  
 The CB method estimates the treatment contrasts; say, the mean difference between 
treatment 𝑘 and the reference treatment. However, the approach’s singular focus on relative 
treatment effects ultimately leads to many limitations. First, although we may resolve the 
incomparable baseline treatment problem by imputing such missing arms in our CB models, LA 
models still need complex model parameterizations for those studies with incomparable baseline 
treatments. Second, the interpretation of correlations between treatments or outcomes with 
respect to relative effects can be difficult. For example, we cannot directly calculate the 
correlation between treatments via correlation between differences of treatment effects. 
Furthermore, the CB model restricts the variance of a baseline arm to always be smaller than that 
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of an active arm. That is, the variance of population mean of baseline arm, ∆𝑖𝐵𝑙, is Var(α𝑖𝐵𝑙), 
whereas for other treatments we have Var(𝛼𝑖𝐵𝑙) + Var(𝛿𝑖𝐵𝑘𝑙), which is never smaller than 
Var(α𝑖𝐵𝑙).  
 As an alternative, we propose an arm-based (AB) approach by respecifying mean structure (2) 
as 

∆𝑖𝑘𝑙=  𝜇𝑘𝑙 +  𝜈𝑖𝑘𝑙, (6) 
where 𝜇𝑘𝑙 is the fixed mean effect of treatment 𝑘 with respect to outcome 𝑙 and 𝜈𝑖𝑘𝑙 is the study-
specific random effect. In this approach, we estimate the absolute treatment effect size, 𝜇𝑘𝑙, not 
the relative effect size, 𝑑𝑘𝑙.  
 Suppose we begin by assuming independence between outcomes. Then the random effects 
𝜈𝑖𝑘𝑙 in (6) can be structured as (𝜈𝑖1𝑙, … , 𝜈𝑖𝐾𝑙)𝑇 ~ MVN(𝟎,𝚲𝑙𝑇𝑟𝑡) with 𝚲𝑙𝑇𝑟𝑡 a 𝐾 × 𝐾 covariance 
matrix, for 𝑙 = 1, … , 𝐿. We denote this model as ABRE1. Alternatively, we can allow 
dependence between outcomes but independence between arms by defining 
(𝜈𝑖𝑘1, … , 𝜈𝑖𝑘𝐿)𝑇 ~ MVN(𝟎,𝚲𝑘𝑂𝑢𝑡) where 𝚲𝑘𝑂𝑢𝑡 is a 𝐿 × 𝐿 covariance matrix, for 𝑘 = 1, … ,𝐾. We 
refer to this model as ABRE2. Again, we can also use the same 𝚲𝑂𝑢𝑡 for all 𝑘 when it is 
reasonable to do so. 

Choice of Priors 
 Lu and Ades assume a noninformative prior on each parameter, in order to let the data 
dominate the posterior calculation. For α𝑖𝐵𝑙 and 𝑑𝑘𝑙, a normal distribution with mean 0 and 
variance 1002 is used, and a Uniform (0.01, 10) is assigned for τ in LAREhom. In all CB 
models, we assume α𝑖𝐵𝑙 follows a N(a𝑙, 𝜉𝑙2) rather than a N(0, 1002) distribution, where a𝑙 is the 
mean reference treatment effect, with noninformative priors for a𝑙 and 𝜉𝑙, namely N(0, 1002) 
and Uniform(0.01, 10), respectively. Throughout all CB and AB models, the fixed effects (𝑑𝑘𝑙 
and 𝜇𝑘𝑙, respectively) follow a N(0, 1002) distribution, while the inverse covariance matrices 
follow a Wishart(𝛀, γ) having mean γ𝛀−1, with the matrix dimension usually chosen for the 
degrees of freedom parameter γ because it is the smallest value that will still yield a proper 
prior.12 We can select 𝛀 to be γ times a prior guess for the covariance matrix. Since we do not 
know the true covariance matrices, we begin with a vague Wishart prior having mean γ𝛀−1 =

 �
5 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 5

�, and later investigate more informative Wishart priors in a sensitivity analysis.  

Decisionmaking 
 Regarding Bayesian model choice, we adopt the Deviance Information Criterion (DIC).12, 13 
DIC consists of 𝐷�, a measure of goodness of fit, and 𝑃𝐷, a measure of complexity. For all CB 
and AB models we implement, we insist that only the observed data contribute to the calculation 
of 𝐷�.14  
 We can identify the best treatments based on a reasonable measurement of the effect size.15 
For instance, we can calculate the probability of being the best or second best treatment, which 
we call the “Best12” probability. Suppose ∆𝑘𝑙 is the marginal mean effect of having event 𝑙 
under treatment 𝑘, modeled from (2) using the posterior of 𝑑𝑘𝑙 and posterior mean of 𝜇𝑖1𝑙 across 
studies, instead of 𝛿𝑖𝐵𝑘𝑙 and 𝜇𝑖𝐵𝑙 in CB models. For AB models, we can obtain ∆𝑘𝑙 by plugging 
in the posterior of 𝜇𝑘𝑙 in (6), noting that the prior mean of 𝜈𝑖𝑘𝑙 is 0. Denoting the data on 
outcome 𝑙 by 𝑦𝑙, then define the “Best12” probability under each outcome as 
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Pr{k is the best treatment | 𝑦𝑙} = Pr{rank(∆𝑘𝑙) = 1 or 2 |  𝑦𝑙} (7) 
To integrate these univariate probabilities over all the outcomes and obtain one omnibus measure 
of “best”, we propose an overall, weighted score denoted by 𝑆𝑘. Suppose all measurements have 
the same directionality,  i.e., small values indicate better condition in all outcomes, our overall 
score is defined as  

𝑆𝑘 =  ∑ 𝑤𝑙𝑙 ∆𝑘𝑙, (8) 
where 𝑤𝑙 is the weight for outcome 𝑙, and ∑ 𝑤𝑙𝑙 = 1. This score can be used to obtain overall 
Best12 probabilities by replacing ∆𝑘𝑙 by 𝑆𝑘 in (7). The weights can be chosen by physicians or 
public health professionals based on their preferences (say, for weighting safety versus efficacy). 

Simulation Study Settings 
 In this simulation, we generate 1000 data pairs (𝑦�𝑖𝑘1,𝑦�𝑖𝑘2) and fit the LARE, CBRE2, and 
ABRE2 models to investigate how the missingness in our design affects Type I error, power, and 
the rates of incorrect decisions when the correlation between outcomes is incorporated into the 
models (CBRE2 and ABRE2) or not (LARE). Figure 2 illustrates the design of the simulated 
complete and partially missing data. For the “complete” data, we generate artificial data from 40 
studies having two treatments and two outcomes featuring moderate positive correlation between 
outcomes, but independence between arms. In panel (b), we drop 20 studies in the first outcome; 
that is, we mimic our OA data, in which only half the studies report the disability outcome. For 
simplicity, we assume that every study has sample size 100 and standard deviation of 2 for every 
arm. 
 To sample the partially missing data, we compare missing completely at random (MCAR), 
missing at random (MAR), and missing not at random (MNAR) mechanisms. The MCAR 
mechanism assumes that the missingness does not depend on the data, so we choose 20 studies 
randomly and make 𝑦�𝑖11 and  𝑦�𝑖21 missing for those studies. The MAR mechanism assumes that 
the missingness depends only on the observed data, but not on the missing data, whereas MNAR 
missingness can depend on both observed and unobserved data. To generate partially missing 
data under the MAR and MNAR mechanisms, we first calculate the ‘probability of missing’ 
(𝑝𝑖,𝑚𝑖𝑠) for study 𝑖 by applying a logit model with the observed or missing data as covariates. 
Here 𝑦�𝑖12 and 𝑦�𝑖22 are considered as observed data, and 𝑦�𝑖11 and 𝑦�𝑖21 are missing data since they 
are not fully observed in our design. We use the following two logit models: 

MAR: logit�𝑝𝑖,𝑚𝑖𝑠� =  2 + 𝑦�𝑖12 −  𝑦�𝑖22 (9) 
MNAR: logit�𝑝𝑖,𝑚𝑖𝑠� =  − 4 − 𝑦�𝑖11 +  𝑦�𝑖22. (10) 

The coefficients are selected to result in a mean 𝑝𝑖,𝑚𝑖𝑠 of about 30 to 40 percent. Given 𝑝𝑖,𝑚𝑖𝑠, we 
generate the missingness indicator vector until 20 studies are selected as missing data. 
 For the true parameters, (𝜇11∗ , 𝜇21∗ , 𝜇12∗ , 𝜇22∗ ) = (0, 0, 0, 3) is chosen in (6), yielding 𝑑21∗ = 0 
and 𝑑22∗ = 3 in the LARE and CBRE models. We calculate Type I error in terms of parameter 
𝑑21 in the three models, with the superscript * indicating the truth. To estimate power at two 
particular alternatives, we select (𝜇11∗ , 𝜇21∗ , 𝜇12∗ , 𝜇22∗ ) = (0, 1, 0, 3) and (0, 2, 0, 3), giving 𝑑21∗ = 1 
and 2, respectively, which we notate as “Power1” and “Power2”. We also calculate the rate of 
incorrectly selecting the best treatment, given as Pr(𝜇11� >  𝜇21� ) under Power1 and 2 scenarios 
because the truth is that 𝜇11∗ <  𝜇21∗ . This rate should be around 0.5 under the Type I error setting. 
 For the random effect parameters, in (6), we generate them from 

�𝜈𝑖11
𝐴𝐵

𝜈𝑖21
𝐴𝐵�  ~ 𝑀𝑉𝑁��00�, � 1 𝜌𝐴𝐵∗

𝜌𝐴𝐵∗ 1 �� and �𝜈𝑖12
𝐴𝐵

𝜈𝑖22
𝐴𝐵�  ~ 𝑀𝑉𝑁��00�, � 3 3𝜌𝐴𝐵∗

3𝜌𝐴𝐵∗ 3 ��, which on the CB 
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scale corresponds to �𝜈𝑖21
𝐶𝐵

𝜈𝑖22
𝐶𝐵�  ~ 𝑀𝑉𝑁��00�, � 2 3𝜌𝐴𝐵∗

3𝜌𝐴𝐵∗ 2 ��. Here, the superscripts and subscripts 

on 𝜈𝑖𝑘𝑙 and 𝜌∗, AB and CB, indicate the model used. From the covariance matrix of random 
effects in the CB model, we can easily calculate the true correlation in the CB model, 𝜌𝐶𝐵∗ =
 3
2

 𝜌𝐴𝐵∗ . To ensure a positive definite covariance matrix for the random effects in the CB model, 

𝜌𝐴𝐵∗  should therefore be between −2
3
 and 2

3
. We set 𝜌𝐴𝐵∗ = 0.6 and 0.0 which induces 𝜌𝐶𝐵∗ = 0.9 

and 0.0.  
 We used the R2WinBUGS package16 in R to perform our simulation studies, where we call 
WinBUGS17 1000 times from R, once for each simulated data set. In each case, we obtain 20,000 
samples, after a 20,000 sample burn-in, and collect medians of parameters across 1000 simulated 
datasets, then estimate Type I error and power.  
 For the OA data analysis, WinBUGS is used to generate two parallel chains of 50,000 
MCMC samples after a 50,000-sample burn-in. To check MCMC convergence, we used standard 
diagnostics, including trace plots and lag 1 sample autocorrelations. The WinBUGS codes are in 
Appendix A. 
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Table 1. Raw OA data; treatment duration (followup) is the category of weeks spent in therapy (1: 
0-5, 2: 6-12, 3: 13-26, and 4: >27); N is the sample size 

Study Country Duration N Therapy 
Pain 

Rescaled 
Score 

Pain 
Rescaled 

SD 

Disability 
Rescaled 

Score 

Disability 
Rescaled 

SD 
Aglamis, 200818 Turkey 2 17 No trt. 7.700 2.300 6.360 0.790 
   17 Ex. aerobic 0.700 1.000 1.280 0.970 
Kovar, 199219 US 2 50 No trt. 4.770 2.120 5.960 2.320 
   52 Ex. aerobic 3.770 1.730 3.740 2.690 
Ettinger, 199720 US 4 149 Education 2.800 1.220 2.250 1.225 
   144 Ex. aerobic 2.280 1.200 1.800 1.200 
   146 Ex. strength 2.420 1.440 1.850 1.225 
Sullivan, 199821 US 4 50 Education 5.500 2.070 6.180 2.750 
   52 Ex. aerobic 4.590 2.400 6.070 2.950 
Patrick, 200122 US 2 124 No trt. 4.873 2.063 3.757 2.237 
   125 Ex. aquatic 4.607 2.457 3.110 1.833 
Baker, 200123 US 3 23 Education 3.780 2.345 3.920 2.936 
   23 Ex. strength 2.560 1.962 3.660 2.869 
Kuptniratsaikul, 200224 Thailand 3 193 No trt. 5.070 2.530 3.045 1.720 
   199 Ex. strength 4.060 2.530 2.695 1.805 
Callaghan, 200525 UK 1 10 Placebo 6.300 1.900 5.100 1.700 
   10 Diathermy(L) 5.000 3.200 5.500 3.000 
   10 Diathermy(H) 5.500 2.700 5.100 2.300 
Laufer, 200526 Israel 1 33 Placebo 4.440 3.510 4.630 3.540 
   38 Diathermy(L) 4.730 3.480 4.930 3.630 
   32 Diathermy(H) 4.030 3.300 4.400 3.440 
Yip, 200727 China 3 94 No trt. 4.250 2.367 1.850 1.374 
   88 Ex. aerobic 3.858 2.201 1.958 1.539 
Rooks, 200628 US 2 23 Education 3.750 2.500 5.980 1.940 
   22 Ex. aquatic 3.650 0.350 6.600 2.150 
Brismee, 200729 US 2 19 No trt. 3.370 1.780 2.990 1.630 
   22 Ex. prop. 2.410 2.050 2.806 2.327 
Garland, 200730 US 2 19 Placebo 4.180 1.659 4.590 1.681 
   39 Elec. stim. 3.740 2.360 3.960 2.425 
Doi, 200831 Japan 2 70 No trt. 2.959 2.394 3.660 1.636 
   72 Ex. strength 2.255 2.068 2.881 1.633 
Lund, 200832 Denmark 2 27 No trt. 2.380 1.403 3.860 1.351 
   27 Ex. aquatic 1.810 1.403 3.700 1.351 
   25 Ex. strength 1.560 1.400 3.610 1.350 
Yip, 200833 Hong 

Kong 
3 50 No trt. 3.459 2.355 0.357 0.280 

   45 Ex. aerobic 3.523 2.193 0.428 0.368 
Özgönenel, 200934 Turkey 1 33 Placebo 4.000 2.600 4.010 1.583 
   34 Ultra sound 3.900 2.000 3.469 1.615 
Selfe, 200835 US 2 20 Placebo 3.178 1.784 3.420 1.654 
   20 Elec. stim. 2.834 2.136 2.933 2.034 
Péloquin, 199936 Canada 2 68 Education 3.940 2.220 1.930 1.880 
   69 Ex. aerobic 3.090 1.540 1.850 2.260 
Chaipinyo, 200937 US 2 24 Ex. strength 1.800 1.600 1.800 1.300 
   24 Ex. prop. 1.300 1.200 1.200 1.000 
Lee, 200938 South 

Korea 
2 15 No trt. 1.686 1.057 4.490 1.750 

   29 Ex. prop. 1.314 1.143 3.560 2.090 
Tascioglu, 201039 Turkey 1 30 Placebo 6.670 1.780 4.618 1.331 
   30 Ultra sound 5.250 1.900 4.525 1.717 
Fukuda, 201140 Brazil 1 23 Placebo 6.900 2.000 4.850 1.750 
   32 Diathermy(L) 3.800 2.200 3.850 2.030 
   31 Diathermy(H) 4.600 2.500 3.680 1.650 
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Study Country Duration N Therapy 
Pain 

Rescaled 
Score 

Pain 
Rescaled 

SD 

Disability 
Rescaled 

Score 

Disability 
Rescaled 

SD 
Messier, 199741 US 3 36 Education 2.560 1.800   
   33 Ex. aerobic 2.300 1.954   
Grimmer, 199242 Australia 1 20 Placebo 3.500 2.900   
   20 Elec. stim. 2.200 2.800   
Taylor, 198143 US 1 10 Placebo 6.750 2.375   
   10 Elec. stim. 5.250 1.425   
Borjesson, 199644 Sweden 2 34 No trt. 3.300 1.500   
   34 Ex. strength 3.000 1.500   
Bautch, 199745 US 2 17 Education 2.080 2.090   
   17 Ex. aerobic 2.190 1.670   
Wyatt, 200146 US 2 23 Ex. aerobic 3.800 1.600   
   23 Ex. aquatic 2.400 1.600   
Gür, 200247 Turkey 2 6 No trt. 4.000 0.743   
   9 Ex. strength 1.471 0.643   
Topp, 200248 US 3 35 No trt. 5.385 1.528   
   32 Ex. strength 5.190 1.657   
Talbot, 200349 US 3 21 Education 1.397 1.242   
   19 Ex. aerobic 1.660 1.463   
Talbot, 200350 US 2 18 Education 1.426 1.026   
   20 Elec. stim. 2.094 1.712   
Messier, 200451 US 3 78 No trt. 3.095 2.030   
   82 Education 2.550 1.945   
   80 Ex. aerobic 3.110 2.010   
Keefe, 200452 US 2 18 No trt. 4.030 2.080   
   18 Education 4.000 1.560   
   16 Ex. aerobic 3.190 1.850   
Gaines, 200453 US 2 18 Education 5.990 2.400   
   20 Elec. stim. 5.180 2.110   
Law, 200454 Hong 

Kong 
1 10 Placebo 4.100 2.600   

   12 Elec. stim. 0.700 0.700   
Durmus, 200755 Turkey 1 25 Elec. stim. 0.600 0.100   
   25 Ex. strength 1.040 0.270   
Hay, 200656 UK 3 108 No trt. 4.180 1.950   
   109 Ex. aerobic 3.755 2.400   
Silva, 200857 Brazil 2 32 Ex. aerobic 3.840 2.750   
   32 Ex. aquatic 3.700 1.810   
Jan, 200858 Taiwan 2 34 No trt. 3.550 1.700   
   34 Ex. strength 2.400 1.750   
Itoh, 200859 Japan 2 8 No trt. 4.930 2.020   
   8 Elec. stim. 5.350 0.970   
An, 200860 China 2 14 No trt. 2.764 2.252   
   14 Ex. aerobic 1.422 2.202   
Tsauo, 200861 Taiwan 2 30 No trt. 1.320 0.760   
   30 Ex. prop. 1.280 0.740   
Lim, 200862 Australia 2 28 No trt. 3.360 1.540   
   27 Ex. strength 2.280 1.690   
Pietrosimone, 200963 US 1 12 No trt. 2.096 1.844   
   11 Elec. stim. 1.165 1.671   
Lin, 200964 Taiwan 2 36 No trt. 3.650 1.700   
   36 Ex. strength 2.100 1.500   
   36 Ex. prop. 2.150 1.150   
Weng, 200965 Taiwan 2 66 No trt. 4.400 1.400   
   66 Ex. strength 3.600 0.700   
   66 Ex. prop. 2.700 1.900   
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Study Country Duration N Therapy 
Pain 

Rescaled 
Score 

Pain 
Rescaled 

SD 

Disability 
Rescaled 

Score 

Disability 
Rescaled 

SD 
Farr, 201066 US 2 98 Education 7.200 6.630   
   100 Ex. aerobic 6.710 6.880   
Bennell, 201067 Australia 2 44 No trt. 3.250 1.650   
   45 Ex. strength 2.450 1.650   
Swank, 201168 US 2 36 Education 4.556 0.467   
   37 Ex. strength 3.667 0.422   
Schilke, 199669 US 2 10 No trt.   2.500 0.850 
   10 Ex. strength   2.300 0.840 
Deyle, 200070 US 2 41 Placebo   3.893 2.723 
   42 Ex. aerobic   1.927 1.826 
Rejeski, 200271 US 4 78 Education   6.559 0.899 
   80 Ex. aerobic   6.286 1.038 
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Figure 1. Network graphs of OA data for each outcome; (a) pain and (b) disability 

  
(a) Pain (b) Disability 

Note: The size of each node represents the number of studies investigating the therapy, and the thickness of each edge implies the total number of samples for the relation. The 
number on the line is the number of studies for the relation. 
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Figure 2. Data structure for simulation; (a) complete data and (b) partially missing data 

  
(a) Complete data (b) Partially missing data 
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Results 
Results for Simulation Study 
 Tables 2 and 3 present the results of our simulation under 𝜌𝐴𝐵∗ = 0.6 and 0.0, respectively. 
For CBRE2 and ABRE2 models, we used two different Wishart priors for the covariance 

matrices; namely, a noninformaive Wishart��10 0
0 10� , 2� and a weakly informative 

Wishart(4𝑅∗, 4), respectively, where 𝑅∗ is the true covariance matrix. We report Pr(𝜇11� >  𝜇21� ) 
in parentheses which is interpreted as the probability of an incorrect decision when 𝑑21∗ = 1 or 2, 
but should be around 0.5 when 𝑑21∗ = 0, along with the simulated Type I error and power.  
 In Table 2, all models work fairly well when there is no missing data (“complete”). For Type 
I error, the LARE model performs poorly under MAR and MNAR mechanisms with very 
extreme Pr(𝜇11� >  𝜇21� ) values, very close to 0 (MAR) or 1 (MNAR). Power1 decreases under 
the MCAR mechanism as we expected, but our CBRE2 and ABRE2 models give slightly higher 
power than LARE. The LARE model gives extremely high Power1 under MAR, but too low 
under MNAR. Here, under MNAR the probability of an incorrect decision is 0.377 using LARE, 
while it is only 0.080 using CBRE2 and ABRE2. All models yield very high power when 
𝑑21∗ = 2 except the LARE model under MNAR mechanism. The fifth and sixth columns show 
that adopting weakly informative Wishart priors can improve power without severely damaging 
Type I error. 
 Table 3 shows that our methods have less benefit when two outcomes are independent. In 
this case, the LARE model does not suffer as much on Type I error under MAR and MNAR 
mechanisms, and Power1 values are not extreme; it also gives slightly smaller Pr(𝜇11� >  𝜇21� ) 
values when 𝑑21∗ = 1 under MNAR than our CBRE2 and ABRE2 models. This is because these 
methods do not borrow much strength across outcomes since the correlation is close to zero in 
this setting. Compared to Table 2, CBRE2 and ABRE2 produce somewhat smaller powers under 
severe missingness mechanisms than when the two outcomes were correlated.    
 Figure 3 exhibits the density plot of median posteriors of 𝑑21 from 1000 simulated partially 
missing data under each of three models with noninformative Wishart priors, when 𝜌𝐴𝐵∗ = 0.6 
and 𝑑21∗  is 0, 1, and 2 under MCAR, MAR, and MNAR mechanisms. When the missingness does 
not depend on the data (MCAR), the median posteriors of 𝑑21 are unbiased across all three 
models, through ABRE2 gives slightly smaller estimator variances, suggesting smaller mean 
squared error (MSE). On the other hand, the MAR and MNAR mechanisms lead to huge positive 
or negative biases with the LARE model, resulting in large Type I error and extreme Power1 
values. This bias depends on the choices of coefficients in (9); for example, if we alter (9) to 
logit�𝑝𝑖,𝑚𝑖𝑠� =  −4 − 2𝑦�𝑖12 +  𝑦�𝑖22 for MAR, LARE gives 0.087 Power1 while CBRE2 and 
ABRE2 give 0.37 and 0.311, respectively. No matter which rules drive the missingness, it is 
obvious that LARE models produce larger bias than our models when the missingness does not 
randomly occur and the two outcomes are correlated.  
 Figure 4 displays the same density plots as in Figure 3, but under 𝜌𝐴𝐵∗ = 0.0. All three 
models deliver unbiased estimates under MCAR and MAR, but give somewhat biased estimates 
under MNAR, although the magnitudes of bias are similar across models. Our CBRE2 and 
ABRE2 models tend to give slightly larger estimator variances. Here, the missingness does not 
much affect the bias of estimators in LARE with two uncorrelated outcomes. Although our 
methods do not deliver strikingly better features over the existing LARE model in this idealized 
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case, our methods do not surrender much in terms of Type I error and power, justifying their use 
across both dependent and independent scenarios. 

Results for OA Data 
 Table 4 compares the fit of six models to our OA data. All CB and AB models incorporate 
the missingness into models, and only CBRE2hom and ABRE2hom models allow correlation 
structure between outcomes. We apply homogeneous variance across arms in LARE, and 
homogeneous covariance matrices for CBRE2 and ABRE2, that is, 𝚺𝑘𝑂𝑢𝑡 and 𝚲𝑘𝑂𝑢𝑡 are the same 
for all 𝑘, respectively. The fixed effects model gives the largest mean deviance score 𝐷� when 
applied to the OA data. ABRE2hom fits the data best with the smallest 𝐷�, but there is no 
significant difference in fit across random effects models. Since our data are sparse, 
heterogeneous variance assumption, a feature of CBRE1 and ABRE1, is not a good choice here. 
Considering both goodness of fit and complexity, CBRE2hom gives the smallest DIC, though 
again, the DIC differences between this model and ABRE2hom or LAREhom are not of practical 
importance (less than five units). 
 Table 5 displays the results from four models; LAFE, LAREhom, CBRE2hom, and 
ABRE2hom with respect to the pain outcome. Here, smaller values of 𝑑𝑘1 and 𝜇𝑘1mean better 
condition and the “best” treatment based on the Best12 probability is in bold. In LAFE, low 
intensity diathermy is the best treatment whereas it is essentially tied with aquatic and 
proprioception exercises for first place under the LAREhom model. Our CB and ABRE2hom 
models suggest that proprioception exercise is the best treatment, followed by strength exercise, 
but the Best12 probability of proprioception exercise from ABRE2hom is much larger than that 
from CBRE2hom. However, since standard deviations are somewhat large, there is no significant 
difference between these two treatments. 
 Table 6 shows similar results with respect to the disability outcome. Proprioception and 
aerobic exercises perform best based on Best12 probabilities from LAFE and LAREhom models, 
respectively. Those two treatments are tied for first place in the CBRE2hom model, and 
proprioception exercise is the best treatment followed by strength exercise in ABRE2hom. It 
seems that proprioception and aerobic exercises are helpful to reduce pain across all models, but 
there is still no strong evidence regarding significant difference among the treatments. 
 Figure 5 delivers our findings above graphically in terms of mean difference between therapy 
and no treatment (𝑑𝑘𝑙) with 95 percent credible intervals across the four models. We indicate the 
best treatment with respect to each outcome in each model with a triangle character, and the 
worst treatment with a square. For the pain outcome, strength and proprioception exercises 
perform significantly better than no active treatment across all models, whereas for the disability 
outcome, only aerobic exercise is significantly different from no active treatment under the three 
random effects models. Compared to the pain outcome, the 95 percent credible sets in disability 
are wider because only about half as many studies reported this outcome. The median posterior 
of correlations between two outcomes are 0.494 (95 percent credible interval 0.18 to 0.71) and 
0.377 (0.06 to 0.61) for the CBRE2hom and ABRE2hom models, respectively, revealing the two 
outcomes to be positively but weakly correlated. 
 Figures 6 and 7 exhibit the posterior probabilities of each treatment taking each possible 
ranking from 1 (best) to 11 (worst) for both the pain reduction and disability improvement 
outcomes.15 Although these graphs cannot reveal significant differences in rankings among 
treatments or the magnitudes of any treatment differences, they do still give a sense of the 
uncertainty in the rank for each treatment. Note that in both figures the positive correlation 
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between the two outcomes leads to generally similar treatment ranking probabilities for both 
outcomes. In Figure 7, proprioception exercise’s probability of being the best treatment for pain 
is roughly 0.8, leaving the remaining 10 treatments to share the remaining 0.2 probability of 
being the best; this treatment also has the single largest probability of being best for disability 
improvement (about 0.4). By contrast, the LA model rankings in Figure 6 do not suggest a 
dominant treatment for either outcome, though aerobic exercise has a nearly 0.4 chance of being 
best for disability improvement, and placebo is unequivocally worst for pain reduction. 
 To obtain Best12 probabilities with combined score in (8), we investigate three sets of 
weights: (𝑤1,𝑤2) = (0.5, 0.5), (0.8, 0.2), and (0.2, 0.8). Our CB and ABRE2hom models give 
proprioception exercise as the global winner for all three sets of weights. Aerobic exercise is the 
overall winner in the LARE models (results not shown). The reason why the weights do not have 
much effect here is that some treatment effects are so large in one outcome that they dominate 
the effects from the other outcome, even when we put low weight on the former (e.g., Best12 
probability of aerobic exercise in the disability outcome is much larger than that of low intensity 
diathermy the pain outcome for LAREhom).   

Sensitivity Analysis 
 Our CB and ABRE2hom models yield weakly positive correlation between two outcomes 
under noninformative Wishart prior on covariance matrix of random effects, assuming zero 
correlation between outcomes with γ = 2 degrees of freedom. As a sensitivity analysis, we 
consider three different more informative Wishart priors: 0.5 between-outcome correlation with 
γ = 2 and 4, and 0.9 between-outcome correlation with γ = 4. Note that a Wishart prior becomes 
less informative as γ decreases to 0. 
 Table 7 displays the results of our sensitivity analysis in terms of model fits (pD, 𝐷�, and DIC) 
and posterior estimates of correlation between two outcomes (𝜌�). Here, the degree of 
informativeness in the Wishart hyperprior increases from left to right. The 𝜌�s in CBRE2hom 
models are likely to be affected more by the selection of a Wishart prior having 𝜌� close to 0.9 
when 𝜌0 = 0.9, γ = 4 while ABRE2hom gives a bit more robust 𝜌� around 0.5 across the three sets 
of informative priors. In CBRE2hom, pD decreases as we utilize a more informative prior, 
whereas ABRE2hom gives almost the same pD values across all informative priors. Regarding 
treatment effect parameters, informative priors do not give dramatic difference in the treatment 
ranking (proprioception exercise is the best treatment in both outcomes under both CB and 
ABRE2hom models across all informative prior cases), but provide smaller standard deviation of 
those parameters.   



 

16 

Table 2. Simulation results when 𝝆𝑨𝑩∗ = 𝟎.𝟔; Type I error, Power1, and Power2 in terms of 𝒅𝟐𝟏; 
Pr(𝝁𝟏𝟏� >  𝝁𝟐𝟏� ) is in parentheses 

  Noninformative Wishart prior Weakly informative Wishart prior 
 LARE CBRE2 ABRE2 CBRE2 ABRE2 
Type I error (𝒅𝟐𝟏∗ = 𝟎)      
Complete 0.042 (0.494) 0.022 (0.494) 0.022 (0.528) 0.027 (0.493) 0.022 (0.482) 
MCAR 0.044 (0.487) 0.023 (0.490) 0.014 (0.523) 0.029 (0.482) 0.023 (0.460) 
MAR 0.335 (0.050) 0.040 (0.360) 0.041 (0.342) 0.025 (0.523) 0.024 (0.475) 
MNAR 0.487 (0.977) 0.003 (0.809) 0.001 (0.829) 0.013 (0.693) 0.010 (0.693) 
Power1 (𝒅𝟐𝟏∗ = 𝟏)      
Complete 0.881 (0.000) 0.883 (0.000) 0.890 (0.000) 0.893 (0.000) 0.892 (0.000) 
MCAR 0.555 (0.014) 0.625 (0.010) 0.569 (0.012) 0.708 (0.011) 0.667 (0.010) 
MAR 0.967 (0.000) 0.575 (0.006) 0.651 (0.004) 0.482 (0.025) 0.580 (0.009) 
MNAR 0.057 (0.377) 0.237 (0.084) 0.209 (0.082) 0.430 (0.041) 0.433 (0.032) 
Power2 (𝒅𝟐𝟏∗ = 𝟐)      
Complete 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 
MCAR 0.985 (0.000) 0.994 (0.000) 0.990 (0.000) 0.995 (0.000) 0.995 (0.000) 
MAR 1.000 (0.000) 0.978 (0.000) 0.992 (0.000) 0.961 (0.000) 0.989 (0.000) 
MNAR 0.733 (0.002) 0.925 (0.000) 0.937 (0.000) 0.981 (0.000) 0.989 (0.000) 
Note: MCAR (missing completely at random), MAR (missing at random), and MNAR (missing not at random) 

 

Table 3. Simulation results when 𝝆𝑨𝑩∗ = 𝟎.𝟎; Type I error, Power1, and Power2 in terms of 𝒅𝟐𝟏; 
Pr(𝝁𝟏𝟏� >  𝝁𝟐𝟏� ) is in parentheses 

  Noninformative Wishart prior Weakly informative Wishart prior 
 LARE CBRE2 ABRE2 CBRE2 ABRE2 
Type I error (𝒅𝟐𝟏∗ = 𝟎)      
Complete 0.040 (0.484) 0.020 (0.482) 0.022 (0.507) 0.022 (0.483) 0.027 (0.485) 
MCAR 0.044 (0.497) 0.023 (0.503) 0.016 (0.528) 0.027 (0.504) 0.023 (0.502) 
MAR 0.045 (0.488) 0.021 (0.480) 0.022 (0.503) 0.030 (0.482) 0.037 (0.476) 
MNAR 0.089 (0.762) 0.003 (0.780) 0.003 (0.762) 0.004 (0.781) 0.005 (0.740) 
Power1 (𝒅𝟐𝟏∗ = 𝟏)      
Complete 0.880 (0.000) 0.885 (0.000) 0.900 (0.000) 0.897 (0.000) 0.918 (0.000) 
MCAR 0.531 (0.010) 0.558 (0.011) 0.521 (0.016) 0.607 (0.012) 0.607 (0.012) 
MAR 0.547 (0.011) 0.416 (0.024) 0.460 (0.015) 0.463 (0.025) 0.534 (0.011) 
MNAR 0.273 (0.057) 0.204 (0.091) 0.226 (0.091) 0.238 (0.094) 0.308 (0.077) 
Power2 (𝒅𝟐𝟏∗ = 𝟐)      
Complete 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 
MCAR 0.985 (0.000) 0.987 (0.000) 0.987 (0.000) 0.991 (0.000) 0.989 (0.000) 
MAR 0.988 (0.000) 0.937 (0.000) 0.972 (0.000) 0.944 (0.000) 0.985 (0.000) 
MNAR 0.945 (0.000) 0.864 (0.000) 0.891 (0.000) 0.891 (0.000) 0.933 (0.001) 
Note: MCAR (missing completely at random), MAR (missing at random), and MNAR (missing not at random) 

 



 

17 

Figure 3. Density plot of 1000 median posteriors of 𝒅𝟐𝟏 from simulations when 𝝆𝑨𝑩∗ = 𝟎.𝟔 under 
MCAR (first row), MAR (second row), and MNAR (third row) mechanisms under noninformative 
Wishart priors; (a), (d), (g) , (b), (e), (h) , and (c), (f), (i)  

(a) MCAR, 𝑑21∗ = 0 (b) MCAR, 𝑑21∗ = 1 (c) MCAR, 𝑑21∗ = 2 

(d) MAR, 𝑑21∗ = 0 (e) MAR, 𝑑21∗ = 1 (f) MAR, 𝑑21∗ = 2 

 
(g) MNAR, 𝑑21∗ = 0 (h) MNAR, 𝑑21∗ = 1 (i) MNAR, 𝑑21∗ = 2 

𝒅𝟐𝟏∗ = 𝟎 𝒅𝟐𝟏∗ = 𝟏 𝒅𝟐𝟏∗ = 𝟐

   

   

  

 

Note: MCAR (missing completely at random), MAR (missing at random), and MNAR (missing not at random) 
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Figure 4. Density plot of 1000 median posteriors of 𝒅𝟐𝟏 from simulations when 𝝆𝑨𝑩∗ = 𝟎.𝟎 under 
MCAR (first row), MAR (second row), and MNAR (third row) mechanisms under noninformative 
Wishart priors; (a), (d), (g) 𝒅𝟐𝟏∗ = 𝟎, (b), (e), (h) 𝒅𝟐𝟏∗ = 𝟏, and (c), (f), (i) 𝒅𝟐𝟏∗ = 𝟐 

 
(a) MCAR, 𝑑21∗ = 0 

 
(b) MCAR, 𝑑21∗ = 1 

 
(c) MCAR, 𝑑21∗ = 2 

(d) MAR, 𝑑21∗ = 0 (e) MAR, 𝑑21∗ = 1 (f) MAR, 𝑑21∗ = 2 

 
(g) MNAR, 𝑑21∗ = 0 

 
(h) MNAR, 𝑑21∗ = 1 

 
(i) MNAR, 𝑑21∗ = 2 

   

 

Note: MCAR (missing completely at random), MAR (missing at random), and MNAR (missing not at random) 
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Table 4. Model comparisons for the OA data  
 LAFE LAREhom CBRE1 CBRE2hom ABRE1 ABRE2hom 

pD 96.9 154.5 162.9 153.9 164.4 158.0 
𝐷� 688.3 169.4 168.4 169.0 169.5 167.8 

DIC 769.2 323.9 331.3 322.9 333.9 325.8 
 
 
 
 
 

Table 5. Estimates of treatment effects and Best12 probabilities from four models with outcome 
pain  

Treatment Effects LAFE (dk1) LAREhom (dk1) CBRE2hom (dk1) ABRE2hom( μk1) 
No treatment 0 0 0 3.732 (0.28) 
Education -0.178 (0.10) -0.530 (0.36) -0.223 (0.38) 3.674 (0.38) 
Placebo -0.125 (0.33) 0.627 (0.78) 1.217 (0.54) 5.000 (0.46) 
Diathermy (low) -2.014 (0.55) -0.895 (1.07) 0.224 (0.90) 4.480 (0.86) 
Diathermy (high) -1.651 (0.56) -0.665 (1.07) 0.439 (0.90) 4.683 (0.86) 
Electrical stimulation -1.201 (0.10) -0.664 (0.55) -0.547 (0.46) 2.904 (0.44) 
Aerobic exercise -0.676 (0.10) -0.982 (0.32) -0.856 (0.32) 3.192 (0.34) 
Aquatic exercise -0.654 (0.18) -0.958 (0.50) -0.617 (0.55) 3.252 (0.62) 
Strength exercise -0.799 (0.08) -0.935 (0.27) -1.001 (0.28) 2.632 (0.34) 
Proprioception exercise -0.778 (0.12) -1.007 (0.42) -1.057 (0.46) 1.814 (0.57) 
Ultrasound -1.002 (0.50) -0.152 (1.11) 0.583 (1.00) 4.540 (0.99) 
     
Best12     
No treatment 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.001 (0.03) 
Education 0.000 (0.00) 0.020 (0.14) 0.014 (0.12) 0.003 (0.06) 
Placebo 0.000 (0.00) 0.000 (0.01) 0.000 (0.00) 0.000 (0.00) 
Diathermy (low) 0.948 (0.22) 0.371 (0.48) 0.075 (0.26) 0.015 (0.12) 
Diathermy (high) 0.755 (0.43) 0.268 (0.44) 0.046 (0.21) 0.007 (0.08) 
Electrical stimulation 0.191 (0.39) 0.091 (0.29) 0.146 (0.35) 0.253 (0.43) 
Aerobic exercise 0.000 (0.02) 0.274 (0.45) 0.330 (0.47) 0.059 (0.23) 
Aquatic exercise 0.002 (0.05) 0.311 (0.46) 0.230 (0.42) 0.135 (0.34) 
Strength exercise 0.003 (0.05) 0.208 (0.41) 0.533 (0.50) 0.556 (0.50) 
Proprioception exercise 0.004 (0.06) 0.339 (0.47) 0.575 (0.49) 0.948 (0.22) 
Ultrasound 0.097 (0.30) 0.119 (0.32) 0.051 (0.22) 0.023 (0.15) 
Standard error is in parentheses, and the “best” treatment in terms of Best12 
Probability is in bold 
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Table 6. Estimates of treatment effects and Best12 probabilities from four models with outcome 
disability 

Treatment Effects LAFE (dk2) LAREhom (dk2) CBRE2hom (dk2) ABRE2hom (μk2) 
No treatment 0 0 0 3.425 (0.47) 
Education 0.072 (0.11) -0.959 (0.62) -0.266 (0.67) 4.300 (0.64) 
Placebo 1.741 (0.51) 0.582 (1.33) 0.658 (0.79) 4.359 (0.57) 
Diathermy (low) 1.263 (0.65) 0.368 (1.55) 0.809 (1.12) 4.717 (1.00) 
Diathermy (high) 0.985 (0.63) 0.035 (1.54) 0.460 (1.10) 4.340 (0.96) 
Electrical stimulation 1.174 (0.65) 0.015 (1.61) -0.567 (1.12) 3.301 (1.01) 
Aerobic exercise -0.214 (0.06) -1.392 (0.50) -0.926 (0.48) 2.766 (0.49) 
Aquatic exercise -0.354 (0.19) -0.452 (0.70) -0.200 (0.73) 4.380 (0.93) 
Strength exercise -0.321 (0.10) -0.650 (0.48) -0.590 (0.48) 2.727 (0.59) 
Proprioception 
exercise 

-0.789 (0.27) -0.819 (0.74) -0.895 (0.76) 2.558 (0.91) 

Ultrasound 1.423 (0.58) 0.274 (1.58) 0.333 (1.21) 3.981 (1.13) 
     
Best12     
No treatment 0.000 (0.00) 0.002 (0.04) 0.002 (0.05) 0.062 (0.24) 
Education 0.000 (0.00) 0.317 (0.47) 0.107 (0.31) 0.008 (0.09) 
Placebo 0.000 (0.00) 0.006 (0.08) 0.005 (0.07) 0.003 (0.05) 
Diathermy (low) 0.003 (0.06) 0.074 (0.26) 0.036 (0.19) 0.018 (0.13) 
Diathermy (high) 0.013 (0.12) 0.136 (0.34) 0.071 (0.26) 0.035 (0.18) 
Electrical stimulation 0.007 (0.08) 0.158 (0.36) 0.359 (0.48) 0.267 (0.44) 
Aerobic exercise 0.047 (0.21) 0.676 (0.47) 0.481 (0.50) 0.443 (0.50) 
Aquatic exercise 0.550 (0.50) 0.121 (0.33) 0.137 (0.34) 0.031 (0.17) 
Strength exercise 0.412 (0.49) 0.110 (0.31) 0.218 (0.41) 0.462 (0.50) 
Proprioception 
exercise 

0.967 (0.18) 0.297 (0.46) 0.470 (0.50) 0.560 (0.50) 

Ultrasound 0.000 (0.02) 0.105 (0.31) 0.114 (0.32) 0.112 (0.32) 
Standard error is in parentheses, and the “best” treatment in terms of Best12  
Probability is in bold 
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Figure 5. OA data interval plot of difference between fixed mean of therapies and no treatment for 
each outcome. LAFE: Lu and Ades-style fixed effects model, LARE: Lu and Ades-style random 
effects model, CBRE2: contrast-based random effects model assuming dependence between 
outcomes, ABRE2: arm-based random effects model assuming dependence between outcomes, 
hom: homogeneous variance or covariance matrix 

 

 



 

22 

Figure 6. Ranking of treatments for reducing pain and improving disability from the homogeneous 
Lu and Ades-style random effects model (LAREhom); the vertical axis gives the posterior 
probability of the indicated treatment taking each of the ranks on the horizontal axis, where 1 is 
best and 11 is worst 
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Figure 7. Ranking of treatments for reducing pain and improving disability from the homogeneous 
arm-based random effects model 2 (ABRE2hom); the vertical axis gives the posterior probability 
of the indicated treatment taking each of the ranks on the horizontal axis, where 1 is best and 11 is 
worst 
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Table 7. Results from sensitivity analysis 
 Noninformative 

prior Informative prior 

 𝜌0 = 0, γ = 2 𝜌0 = 0.5, γ = 2 𝜌0 = 0.5, γ = 4 𝜌0 = 0.9, γ = 4 
CBRE2hom     
pD 153.9 152.5 151.9 147.9 
𝐷� 169.0 168.0 168.1 167.9 
DIC 322.9 320.5 320.0 315.8 
𝜌� 0.494 (0.18 - 0.71) 0.670 (0.41 – 0.82) 0.675 (0.43 – 0.82) 0.879 (0.73 – 0.94) 
ABRE2hom     
pD 158.0 157.7 157.5 157.2 
𝐷� 167.8 167.9 168.3 168.4 
DIC 325.8 325.6 325.8 325.6 
𝜌� 0.377 (0.06 - 0.61), 0.449 (0.45 – 0.66) 0.459 (0.16 – 0.67) 0.518 (0.23 – 0.71) 
𝜌0: prior guess of between-outcome correlation, γ: degrees of freedom in Wishart prior, and 𝜌�: median posterior of the correlation 
with 95% credible interval in parentheses 
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Discussion 
 The main objective of this report has been to propose new Bayesian MTC approaches for 
multiple continuous outcomes, and compare them to previous hierarchical modeling methods. 
We considered unobserved arms to be missing data and handled them by borrowing information 
from the observed indirect relationships. We also combined multiple outcomes into one model 
by incorporating the correlation structures between them. Next, we developed AB models that 
estimate absolute effects of treatments, rather than relative effects. We used simulation to show 
that our models can outperform existing Lu and Ades-style models in terms of Type I error, 
power, and probability of incorrectly selecting the best treatment under various missing data 
mechanisms, and illustrated our methods using the OA data. 
 Our simulation study shows that ignoring missing data and correlations between outcomes 
can cause biased estimates, resulting in bad hypothesis test performance when missingness of 
treatment arms depends on the observed (and even missing) data. Although our simulation 
setting is simple, somewhat idealized (all studies have the same sample size and assumed 
standard deviation), and 𝑑21∗ values are somewhat arbitrarily selected, this problem could well be 
more severe for more complicated data structures. Also, CB models cannot capture the correct 
correlation in some settings due to their inherent constraints, while AB models can. For example, 
in our simulation setting, CB models cannot estimate 𝜌𝐶𝐵 if we set 𝜌𝐴𝐵∗ = 0.9 because this 
violates the positive definiteness of the CB covariance matrix. Although our methods perform 
almost equally when two outcomes are independent, our methods still outperform the existing 
LA methods in terms of Type I error, power, and Pr(𝜇11� >  𝜇21� ).  
 We fit six models to the OA data, with LAREhom, CBRE2hom, and ABRE2hom producing 
slightly smaller DIC values. The fixed effects model performs poorly because it can never 
capture the variability between studies. In the random effects models, a homogeneous variance 
(or covariance matrix) assumption is quite reasonable because our data are so sparse that 
heterogeneous covariances may not be estimable. Regarding the pain outcome, low intensity 
diathermy emerged as the best therapy in LA models, whereas proprioception exercise 
performed best under CB and ABRE2hom models, followed by strength exercise. However, 
there were no significant differences between most active therapies, due to the large associated 
standard deviations (e.g., Figure 5). Note that three studies reported diathermy intervention with 
only a short length of followup (0 to 5 weeks), so we can only see the short-term effect of 
diathermy here. By contrast, most studies for proprioception or strength exercises reported a 
followup period of 6 to 12 weeks. For the disability outcome, aerobic and proprioception 
exercises perform well across all three random effects models, though again significant 
differences were rare.  
 Our methods have several limitations. First, we only considered homogeneous random 
effects in our Lu and Ades-style models. A heterogeneous random effects model can be applied 
with rigorous construction of covariance matrices to satisfy the positive definiteness condition.72 
However, as mentioned above, such covariance matrices could be inestimable here since our data 
are quite sparse. Second, all our models are fitted under the assumption of consistency. 
Measuring inconsistency between direct and indirect comparisons in MTCs with multiple 
outcomes will be discussed in a future manuscript. Third, in our CB and AB random effect 
models, we assumed that either the between-outcome or between-arm correlations were all zero. 
However, such assumptions can be loosened by factorizing the random effects into two 
independent sources. For example, in the AB model, (6) can be rewritten as  ∆𝑖𝑘𝑙=  𝜇𝑘𝑙 +  𝜈𝑖𝑘 + 
𝑤𝑖𝑙, where (𝜈𝑖1, … , 𝜈𝑖𝐾)𝑇 ~ MVN(𝟎,𝑫𝑇𝑟𝑡), (𝑤𝑖1, … ,𝑤𝑖𝐿)𝑇 ~ MVN(𝟎,𝑫𝑂𝑢𝑡), and 𝜈𝑖𝑘 and 𝑤𝑖𝑙 are 
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independent. Here, 𝑫𝑇𝑟𝑡 and 𝑫𝑂𝑢𝑡 are K × K and L × L covariance matrices implying correlation 
between arms and outcomes, respectively, and each covariance matrix has an inverse Wishart 
prior. In this approach, we must select these Wishart priors carefully, and this is a subject of 
ongoing investigation. 
 One possible issue with continuous outcomes compared to binary outcomes is that each study 
may report different types of measurement. That is, some studies may report mean difference of 
measurement between before and after the treatment, while others report only the mean 
measurement at the end of treatment. Since all studies in our OA data reported mean 
measurement after the physical therapy, we did not concern ourselves with this issue here. 
However, Bayesian hierarchical modeling can combine such different measurements without 
loss of information.   
 Our data analysis also has some limitations. First, we assumed that patients in each 
intervention from each study had similar clinical characteristics, so we did not adjust our models 
for such baseline covariates, (e.g., age, severity of OA, or comorbidities). Meta-regression5 is 
usually applied to see associations between those sample covariates and treatment effects, but it 
does not detect the relationship well here because we have only aggregated information.73 To see 
such relationships correctly, individual-level data should be incorporated. Next, we did not 
control for the effect of varying followup times and instead selected a frequently observed 
followup time for each treatment when studies reported outcomes from multiple followup times. 
Although we made an effort to have similar followup times within each treatment, not all studies 
had precisely the same followup time for a specific treatment. However, a majority of studies 
investigated only one followup time, and in any case our data were not intended to measure the 
effect of followup time. Also, the outcomes from different followup times are likely to be 
correlated because they are typically obtained from the same sample of patients; this feature is 
beyond the scope of our report. Lu et al. 74 suggest various models for MTCs at multiple 
followup times with single binary outcome.  
 Finally, we can apply our AB model framework to multiple binary outcome settings by using 
a logit link function rather than a linear link function. We are currently extending our methods to 
mixed types of outcomes (say, a binary safety outcome paired with a continuous efficacy 
outcome). Furthermore, we hope to extend our models to incorporate both aggregated and 
individual-level (i.e., patient-level) data, potentially permitting borrowing of strength from 
patient-level covariates to investigate how those personal clinical characteristics impact 
estimated treatment effects.  
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AB Arm based 
ABRE Arm-based random effects 
AIMS Arthritis Impact Measurement Scale 
CB Contrast based 
CBRE Contrast-based random effects 
DIC Deviance Information Criterion 
EPC Evidence-based Practice Center 
HAQ Health Assessment Questionnaire 
KOOS Knee Injury and Osteoarthritis Outcome Score 
LA Lu and Ades 
LAFE LA-fixed effects 
LAREhom Lu and Ades-style homogeneous random effects 
MAR Missing at random 
MCAR Missing completely at random 
MCMC Markov chain Monte Carlo 
MNAR Missing not at random 
MOS Medical Outcome Study 
MSE Mean squared error 
MTC Mixed treatment comparison 
OA Osteoarthritis 
RCT Randomized controlled trial 
SD Standard deviation` 
SF-36 physical function 36-Item Short-Form Health Survey 
VAS Visual Analogue Scale 
WOMAC Western Ontario MacMaster 
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