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Preface 
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based Practice Centers (EPCs), sponsors the development of evidence reports and 
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to improve the quality of health care in the United States. The reports and assessments 
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medical conditions and new health care technologies and strategies. The EPCs 
systematically review the relevant scientific literature on topics assigned to them by 
AHRQ and conduct additional analyses when appropriate prior to developing their 
reports and assessments. 
 To improve the scientific rigor of these evidence reports, AHRQ supports empiric 
research by the EPCs to help understand or improve complex methodologic issues in 
systematic reviews. These methods research projects are intended to contribute to the 
research base in and be used to improve the science of systematic reviews. They are not 
intended to be guidance to the EPC program, although may be considered by EPCs 
along with other scientific research when determining EPC program methods guidance.  
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Abstract 
Background. It is common that studies do not report sufficient data to allow 

meta-analysis of continuous outcomes. The standard error (SE) of the within-group 
differences is often not reported and cannot be calculated because the within-group 
correlation is unknown. For meta-analysis of net-changes, one must thus estimate the 
SE based on an arbitrarily chosen correlation. This study describe the range of 
correlation values in a representative set of studies with sufficient data reported, and to 
simulate the effect of using different correlation values on meta-analysis summary 
estimates when imputing missing data. 
 Methods. From articles available to us from previous systematic reviews and 
from trials registered at ClinicalTrials.gov, we selected those that prospectively 
compared two or more interventions for continuous outcomes and reported all three of: 
baseline means and SEs (or equivalent), final means and SEs, and within-group 
changes and SEs. From these data we back-calculated correlation values for each 
study group. We described these data and tested for patterns based on study 
characteristics. We assessed the bias on estimates of within-group change SEs by 
comparing reported SEs with imputed SEs using arbitrarily chosen correlation values. 
We simulated meta-analyses, assessing the bias, coverage, and accuracy of the 
summary estimates derived from studies with missing correlation data. 
 Results. We analyzed 811 within-group correlation values from 123 studies with 
281 study groups. The median (interquartile range [IQR]) within-group correlation values 
across all studies was 0.59 (0.40, 0.81). Active treatment groups had lower correlation 
values (median 0.54) than no treatment groups (median 0.73, P<0.001). There was 
heterogeneity of correlation values across both outcome types and clinical domains. 
There was no apparent association with followup duration, but correlation values were 
lower with increasing sample size among no treatment groups. In the empiric dataset, 
imputing low correlation values (0 or 0.25) yielded an overestimation of the within-group 
SE in more than 85% of cases; imputing a correlation of 0.5 yielded values closer to 
those actually reported. Imputation had similar effects on the net-change SE.  
Simulation studies informed by the empirical results, demonstrated that imputation of 
values does not introduce bias in the meta-analysis estimate. Imputing values higher 
than the true correlation resulted in coverage probabilities that were lower than those in 
analyses using the complete data. However, coverage probabilities were generally 
lower than nominal (<0.95 even with complete data) in the presence of moderate to 
substantial between study heterogeneity, despite using random effects models 
(DerSimonian-Laird).  

Conclusion. Negative within-group correlation values are very uncommon in 
clinical studies. Imputing values in meta-analyses where some or all within-group 
correlation estimates are not reported does not introduce bias in the summary estimate 
of the treatment effect. However, imputation can affect the SE of the summary estimate 
when the imputed value is different from the “true”. In such cases, sensitivity analyses 
using alternative imputation values, possibly informed by studies reporting relevant 
information, are recommended.   



DRAFT DRAFT 

DRAFT 1 DRAFT 

Introduction 
 When conducting meta-analyses of continuous outcomes (for example, fasting blood glucose, 
systolic blood pressure) in randomized clinical trials (RCTs) it is common that studies do not 
report sufficiently complete data. For most meta-analyses of parallel design trials, the parameter 
of interest is the between-group difference in the net change of the continuous outcome; namely 
the “net difference” between the change in outcome in the intervention group (A) minus the 
change in the control group (B): , or equivalently 

.  
 For inverse-variance meta-analysis of such trials, the net change and the variance (or 
standard error, SE) of the net change are needed from each trial.1 In general, the net change is 
readily available or can be easily calculated from published trial reports. It is common, though, 
that studies do not report the SE of the net change (or appropriate statistics that can be used to 
calculate it, such as the standard deviation of the net change, its confidence interval, or the exact 
P value comparing baseline and post-treatment values). If a study reports the SEs for the change 
from baseline in both the intervention and control groups, then it is possible to accurately 
calculate the SE of the net change: , where  and  are the SE of 
the change in the outcome for each trial group.  
 However, many studies do not report SE data for the within-group changes. Instead, they 
commonly report the SE (or standard deviation) for both the baseline and the final values within 
each group. In such cases, for meta-analysis, one must estimate the SE of the within-group 
changes. Because the baseline and final values are calculated on the same patients they are 
correlated and the SE of the within group change in each group is given by the formula: 

, where r is the correlation between 
baseline and final values. All correlations nominally take values between –1 and 1. If r is 
positive, within the context of a given study, participants with high baseline values tend to have 
high final values relative to other participants (and vice versa). If r = 0, baseline and final values 
are independent of each other. If r is negative, participants with high baseline values tend to have 
low final values (and vice versa). The closer r is to 1 (or –1), the stronger the prediction of final 
values from the baseline values. Negative within-group correlations are likely to be uncommon, 
so that, in the majority of studies reporting baseline and final measurements, one expects the 
correlations to be positive.a  

 Thus, in the common scenario where the SE of within-group changes (or its equivalent) is 
not reported (and not available from the study authors), the meta-analyst must make a best guess 
at the value of r to calculate the net change SE. Other options for the meta-analyst, which are not 
further discussed, include excluding the study from the meta-analysis or using a SE that is based 
on the standard deviations of other studies included in the meta-analysis—or from other sources 
of studies (e.g., the median or largest standard deviation among included studies). Many authors 
use the arbitrarily chosen value of r = 0.5, presumably because it is half way between 0 and 1. 
An empirical assessment of meta-analytic practices described large variation in handling missing 
variance data in systematic reviews. Among 101 systematic reviews in an empiric assessment by 
Wiebe et al.2, 29 imputed within-arm correlations. Approaches included imputing a correlation 

                                              
a However, this is to be verified empirically. 
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value of 0.5 (n=5), a value of 0 (n=4), a value from another included study (n=11), performing a 
sensitivity analysis of at least two values (n=6), or imputing an unstated value (n=6).  
 Clearly, there is little evidence to recommend a specific approach for meta-analysis of net-
changes when some of the within-group correlations are missing. Therefore, we set out to better 
understand the distribution of true values of r across published trials, to assess if there are any 
associations between characteristics of the trials and the value of r, and how using different 
values of r in meta-analyses might affect summary estimates. 

Study Aims  
1. In a representative sample of trials, describe the range of correlation values, r. 
2. In a representative sample of trials, compare values of the net change SEs derived 

from reported within-group SEs with the net change SEs derived from estimating the 
correlation value r. 

3. By simulation, explore the impact of imputing a range of correlation values, r, on fixed 
and random effects model meta-analyses. 

 

Methods 
Source of studies 
 We collected continuous outcome data from a convenience sample of RCTs from three large 
sets of published and unpublished studies. Our initial goal was to identify at least 100 
comparative studies with sufficient data (see third bullet under Study eligibility, immediately 
below). The first source included all primary studies (studies with reported data) we have 
available as full-text articles stored on our EPC’s network (studies on a wide range of domains 
including, but not limited to, cardiology, dentistry, gastrointestinal disease, maternal health, 
nutrition, oncology, pediatrics, pharmacogenetics, pulmonology, and surgery). The second 
source included all full-text primary studies stored on the network of the Evidence Review Team 
for the evidence-based clinical practice guideline organization Kidney Disease Improving Global 
Outcomes (KDIGO); these included studies retrieved for 19 guidelines and several other topics. 
The third source was the ClinicalTrials.gov database. With the assistance of our colleagues at the 
National Library of Medicine, we compiled a list of 1433 records of trials with published results 
as of October 2011. 
 

Study eligibility 
 The full-text (or spreadsheet from ClinicalTrials.gov) of each study was screened with the 
following eligibility criteria: 

• Randomized or nonrandomized prospective comparative studies of parallel or crossover 
design (with two or more study groups [arms]); crossover studies had to report eligible 
data for the baseline and final timepoints in the first phase of the crossover (i.e., the 
parallel group phase prior to crossover) 

• One or more continuous outcomes reported 
• Sufficient data to back-calculate the correlation value, r, in each study group, including 

all three sets of items here: 
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o Mean baseline estimate and a measure of its variance (SE, standard deviation, or 
defined confidence interval) 

o Mean final estimate and a measure of its variance (SE, standard deviation, or 
defined confidence interval) 

o Within-group change (final minus baseline) and a measure of its variance (SE, 
standard deviation, or defined confidence interval) 

• All data had to be reported with the same metrics; in particular we excluded studies that 
reported only baseline values and percent changes from baseline values 

• All data had to be reported in text format (i.e., we did not estimate data from figures) 
• In addition, 

o We excluded median values, interquartile ranges, full ranges and P values (for the 
purposes of this exercise, we considered P values to be an insufficiently accurate 
estimate of the within-group SE for calculating r) 

o We excluded adjusted within-group or between-group differences 
Of note, we included studies of any population, intervention, comparator, or (continuous) 
outcome. 

Data extraction 
 From each study we extracted the following data: 

• Study identifier information (including PubMed identifiers for associated studies reported 
in ClinicalTrials.gov) 

• Medical domain of the study and a brief summary of the eligibility criteria 
• Study design (RCT, prospective nonrandomized comparative study) 
• Followup duration 

o When outcomes were reported at multiple followup timepoints, we extracted data 
from the timepoint when >80 percent of the baseline sample size were included; if 
no timepoint met this criterion we used the timepoint with the largest sample size 

• Names of interventions, including comparator for up to three interventions 
o If there were more than three interventions (study groups), we included the 

comparator intervention (e.g., placebo, usual care) and the first two other 
interventions listed 

• Names and units of up to five continuous outcomes 
o If there were more than five continuous outcomes reported, we randomly selected 

five outcomes (using Excel’s random number generator); however, we tried to 
avoid extracting outcomes that were derivative of other included outcomes (e.g., 
mean arterial blood pressure and systolic and diastolic blood pressures) 

• For each outcome-intervention pair we extracted 
o Baseline, final, and difference sample sizes 

 If final and difference sample sizes were not reported, we assumed they 
were the same as the baseline sample size 

 If difference sample size was not reported, we assumed it was the same as 
the final sample size 

o Baseline, final, and difference reported mean values 
o Baseline, final, and difference reported variation (either SE, standard deviation, or 

confidence interval, but not P value) 
Of note, for articles that reported multiple trials, we extracted each trial separately. 
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 Each study was extracted by one researcher (EB, AE, KP). After all extractions were 
complete, each extraction was reviewed and corrected by a second researcher. Studies or 
outcomes that did not meet eligibility criteria were deleted. The PubMed identification numbers 
were compared and duplicate studies were consolidated. 
 For each intervention-outcome pair, we calculated the value of r based on the reported data. 
 

Data analyses 

Aim 1. Empirical assessment 
 We first excluded study groups where the estimated (back-calculated) correlation coefficient 
between baseline and final values was outside the interval [-1, 1]; such estimates of the 
correlation coefficient are not validb and occur because of rounding of values reported (or errors) 
in published papers. We used our best judgment to categorize outcome types as a device 
measures (e.g., tonometry), laboratory values, signs (e.g., visual acuity), symptoms (e.g., pain), 
questionnaire or equivalent scores, or “other”. Of note, blood pressure (clinic, home, or 
ambulatory) was categorized as a device measure. Similarly, we classified studies into clinical 
domains based on a combination of the study eligibility criteria and the goal of treatment; studies 
could be classified with multiple clinical domains (e.g., kidney disease and cardiovascular 
disease). We also categorized interventions (study groups) as either active or no treatment 
(including placebo and usual care). 
 We calculated basic summary statistics for the range of calculated r values. We drew 
scatterplots with locally weighted smoothing lines (LOWESS), histograms, and boxplots of the r 
values against different study or outcome characteristics, and sample size. Associations between 
r values and continuous study characteristics (e.g., study duration) were expressed as Spearman 
correlation coefficients; comparisons of correlation values across categorical characteristics (e.g., 
active treatment versus no treatment) were analyzed with the Kruskall-Wallis test. 
 To assess what study or group characteristics affect the within-group correlation we used a 
mixed effects linear model with the Fisher z-transformedc correlation coefficient as the outcome 
of interest and the following predictors: duration of followup (square root transformed to 
improve visualization of short-duration followup), type of intervention (active treatment or no 
treatment), group sample size (log transformed), outcomes measured, and clinical domain (for 
analysis in the model, we used our judgment to choose the dominant clinical domain for the 4 
studies assigned multiple clinical domains). This model accounted for the clustering of study 
groups within studies using a random intercept by study. We used the same model to test if there 
was an interaction between study duration or baseline sample size and type of treatment on the 
reported correlation by including appropriate cross-product terms (study duration × type of 
treatment, or baseline sample size × type of treatment, respectively). 
 All analyses were performed in Stata version IC/12.1 (Stata Corp., College Station, TX). 
Statistical significance was defined as a two-sided P-value < 0.05 for all comparisons. No 
adjustments for multiple comparisons were performed. 

                                              
b The correlation coefficient can be shown to have range=[-1, 1] because of the Cauchy–Schwarz 
inequality. 
c The Fisher z-transformation of variable r is 𝑧(𝑟) = 1

2
ln �1+𝑟

1−𝑟
� = atanh(𝑟).  This is a variance-

stabilizing transformation for the estimated correlation coefficient. 
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Aim 2. Impact of imputing alternative correlation values in the empirical dataset 
 To assess the effect of imputing correlation values on the empirical dataset, we recalculated 
the study-specific SEs of the within-group change for each study group using alternative imputed 
values (ρ = 0, 0.25, 0.50, and 0.75). The tested imputed values are commonly used in sensitivity 
analyses of studies included in meta-analyses that do not report the within-group correlation 
value. We graphically compared SEs calculated using imputed values against SEs calculated 
using the complete (true) data by constructing pairwise scatterplots.  
 To analyze the effect of imputing various correlation values on the SEs of net changes (the 
study estimates most likely to be used in meta-analyses), for each study we also paired the 
comparator group with an arbitrarily selected active intervention (if there was no obvious 
comparator, we arbitrarily selected two interventions). These data were analyzed in the same 
manner as within-group correlation values. 

Aim 3. Imputing correlation values on fixed and random effects model meta-
analyses 
 To explore the analytical performance of imputing within-group correlation values when 
some or all studies in a meta-analysis do not report the necessary estimates, we performed a 
series of simulation studies. Details about the simulation methods and parameter values are 
presented in Appendix A. Briefly, we simulated meta-analyses (each including 5, 10 or 20 
studies, all of which had the same sample size) of parallel-group design trials with two treatment 
groups and a continuous outcome, measured at baseline and followup. For parsimony, we 
assumed that the study groups were independent, all patients remained in their treatment 
assignment group (intention-to-treat), and had complete followup. Table 1 summarizes the 
parameter values used in simulations. We evaluated different control group sample sizes and 
different randomization ratios (sample size ratios between the treated and control group of 1:1 or 
2:1). Values for the baseline and followup outcome values were drawn from bivariate normal 
distributions. The within-group correlation was assumed to be the same for both groups; we 
assessed correlation values equal to the 25th, 50th, and 75th percentile of the distribution of 
correlation values obtained in the empirical component of this study (Aim 1), along with the 
special case of no correlation (r=0). The mean of the baseline values of treated and control 
groups and the followup values of the control group were assumed to be zero; the variance for 
these values was set at 1 SE unit. The followup mean of the treated group depended on the 
treatment effect (0, 0.1, 0.5, and 1). The followup variance of the treated group was assumed to 
be either 1 or 2. The treatment effect was assumed to be fixed (shared across studies) for some 
scenarios and variable (i.e., a random quantity) in others. We also explored different levels of 
variability of treatment effects (i.e., the between-study heterogeneity; tau-squared=0, 0.1, or 0.5). 
For each scenario we simulated 1000 meta-analyses (i.e., 5,000, 10,000, and 20,000 studies when 
the number of studies per meta-analysis was 5, 10, or 20 respectively).  
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Table 1. Simulation parameters and values used (see Appendix A for additional details on the simulation 
model) 

Parameters Simulation values 
Number 

of 
scenarios 

Control and treatment groups baseline means 0 1 
Control and treatment groups baseline variances 1 1 
Control group followup mean 0 1 
Control group followup variance 1 1 
Average treatment followup mean (treatment effect) 0 or 0.1 or 0.5 or 1 4 
Treatment group followup variance 1 or 2 2 
Control group within-group correlation* 0 or 0.40 or 0.59 or 0.81 4 

Treatment group within-group correlation Set equal to the control 
group 1 

Control group sample size 20 or 50 or 100 3 
Sample size ratio (treatment:control) 1 or 2 2 
Between-study heterogeneity of the treatment effect  
(tau-squared) 0 or 0.1 or 0.5 3 

Number of studies per meta-analysis 5 or 10 or 20 3 
Total scenarios - 1728 

* Chosen values based on the empirical values from Aim 1 (25th, 50th, and 75th percentiles, and 0). 
 

Meta-analysis methods 
 For each simulation scenario we performed meta-analyses using fixed and random effects 
inverse variance models. For random effects analyses the between-study variance (heterogeneity) 
was estimated using the DerSimonian-Laird method.1 We considered three types of scenarios for 
the analysis of the simulated data, to reflect different levels of reporting across studies: 

1. Availability of “complete data” from all studies, including the correlation of the baseline 
and followup values in each study group. This reflects a “best case” scenario for meta-
analysis based on aggregate data: all studies report adequate data for synthesizing net 
change values, while accounting for the correlation of baseline and followup 
measurements in each study group. 

2. Availability of “incomplete data” from all studies, i.e. missing correlation values for all 
studies (both treatment and control groups). This reflects the worst case scenario in meta-
analyses of published data: none of the included studies provide sufficient statistics to 
estimate the net change and values need to be imputed for all studies. Commonly, a value 
of 0.5 is used; however, sensitivity analysis using different correlation values may be 
performed. We present results under all 1728 scenarios using an imputation value of 0.5. 
For a typical scenario we also show results for different imputed values. Because the 
results follow a predictable pattern (see Discussion), we do not present results for other 
scenarios.   

3. Availability of “partially complete data”, i.e. missing correlation values from some of the 
included studies. This represents an intermediate case where only some of the studies 
report adequate data to calculate sufficient statistics whereas the within-arm correlations 
need to be imputed for the rest. To emulate this scenario, we generated datasets where the 
within-arm correlation values were missing from both the treatment and control groups 
from 50 percent of the studies included in each meta-analysis.  
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Comparisons between imputation methods 
We summarized the simulation results using graphs and tables. We focus on the following 

measures of performance3:  
a. Bias: the deviation of the summary estimates (treatment effects) obtained by using 

imputed correlation values compared to the simulated true parameter value.  
b. Coverage: the proportion of times the obtained 95 percent confidence interval (from the 

meta-analysis of simulated studies) contains the simulated true parameter value 
(treatment effect).  

c. Accuracy: the mean squared error (the sum of the variance and the squared bias) of the 
simulation. 

For brevity, in the main text of the report we present results from random effects meta-
analyses for all simulated magnitudes of the treatment effect, under homogeneity and different 
levels of heterogeneity (between-studies), and for all control group sample sizes. However, we 
restrict the results presented to cases where the sample size of the treatment and control groups 
were equal, and the baseline and followup treatment variances in the treatment group were equal. 
Scenarios with unequal treatment group variances (variance ratio = 2) and unbalanced treatment 
and control groups (sample size ratio = 2) produced very similar results and are summarized in 
Appendix B.  

Throughout the report, we emphasize the impact of imputing correlation values on estimates 
of the treatment effect and its uncertainty. We do not expand on the inherent properties of the 
meta-analytic summary estimates, although we highlight key relevant findings. The performance 
of the common meta-analytic estimates used in our analyses is generally well-understood and has 
been extensively explored in a number of theoretical papers and simulation studies.1,4-6  

Results 
Aim 1. In a representative sample of trials, describe the range of 
correlation values, r 
 A total of 125 studies with 281 total study groups that met criteria were included and data 
extracted. From each study we extracted an average of 3.0 outcomes. Thus, in total we calculated 
852 values of r, of which 811 (95 percent) were valid estimates of the correlation coefficient (i.e., 
between -1 and 1) and are analyzed further. Only two studies (with 12 r values) were 
nonrandomized, so we did not further analyze study design. No study reported r values. 
 Given on our sources of studies, kidney disease was a over-represented clinical domain: 38 
studies (30 percent) evaluated kidney disease; 18 (14 percent) cardiology; 11 (9 percent) each 
diabetology and pulmonology; 8 (6 percent) gastroenterology; 6 (5 percent) hypertension; 5 (4 
percent) each internal medicine and ophthalmology, 4 (3 percent) each genetic disorders and 
psychiatry; and 3 or fewer each 13 other clinical domains (see Table 2). The percentages of 
analyzed r values by clinical domain were similar, except that cardiology represented 18 percent 
of r values but only 14 percent of studies. 
 The most common outcome type was laboratory measures (39 percent), followed by 
questionnaires or scores (23 percent), signs (16 percent), device measures (15 percent), and 
symptoms (3 percent), and other types (3 percent)—including medication use and physical tests. 
There were 611 values from active treatment groups and 200 from placebo/no treatment/usual 
care groups; the apparent disparity occurred because most studies compared two or more active 
treatments. 
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 Within-group baseline sample sizes ranged from 2 to 6264 with a median (interquartile range 
[IQR]) of 69 (23, 169) participants. The median (IQR) analyzed duration of followup was 3 (1.4, 
7.35) months with a range of 0.5 hours to 4.9 years. 
 
Table 2. Descriptive characteristics of included studies 

Characteristic Result 
Number of studies 123* 
Number of groups analyzed 811* 
Median group sample size (25th, 75th percentile) 69 (23, 169) 
Treatment type  
        Active treatment groups, n (%) 611 (75%) 
        Median active treatment group sample size (25th, 75th percentile) 76 (23, 177) 
        Number of placebo groups, n (%) 200 (25%) 
        Median placebo group sample size (25th, 75th percentile) 58 (24, 151) 
Clinical domain† n (% studies) [% values] 
        Kidney disease 38 (30%) [31%] 
        Cardiology 18 (14%) [18%] 
        Diabetology 11 (9%) [9%] 
        Pulmonology 11 (9%) [9%] 
        Gastroenterology 8 (6%) [5%] 
        HTN 6 (5%) [5%] 
        Internal Medicine 5 (4%) [5%] 
        Opthalmology 5 (4%) [3%] 
        Genetic disorders 4 (3%) [2%] 
        Psychiatry 4 (3%) [4%] 
        Critical care 3 (2%) [2%] 
        Pediatrics 3 (2%) [3%] 
        Rheumatology 3 (2%) [1%] 
        Dermatology 2 (2%) [0.7%] 
        Immunology 2 (2%) [0.5%] 
        Urology 2 (2%) [2%] 
        Geriatrics 1 (1%) [2%] 
        Gynecology 1 (1%) [1%] 
        Infectious diseases 1 (1%) [0.2%] 
        Neonatology 1 (1%) [0.2%] 
        Neurology 1 (1%) [0.7%] 
        Orthopedics 1 (1%) [0.2%] 
        Transplant 1 (1%) [0.5%] 
Outcome type n (% studies) [% values] 
        Device measures 32 (26%) [15%) 
        Laboratory values 61 (50%) [39%] 
        Other 10 (8%) [3%] 
        Questionnaires/Scores 42 (34%) [23%] 
        Signs 36 (29%) [16%] 
        Symptoms 7 (6%) [3%] 
Followup duration, in months  
        All groups, median (25th, 75th percentile) 3 (1.4, 7.35) 
        Active treatment, median (25th, 75th percentile) 3.7 (1.4, 12.2) 
        Placebo, median (25th, 75th percentile) 2.8 (0.7, 5.6) 

n = number of study groups (separately derived r values). 
*  41 study groups were excluded because the statistics reported resulted in impossible correlation values 

(lower than -1 or higher than +1), presumably due to rounding or reporting error. After these exclusions 
2 of the 125 studies contributed no study groups to the analyses.  
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† Including double counting where 1 study was categorized with 3 conditions and 3 studies were 
categorized with 2 conditions each. 

 

Estimated correlation values  
 The vast majority of estimated correlation values were positive (Figure 1 and Table 3); the 
median (IQR) within-group correlation values across all studies was 0.59 (0.40, 0.81). For active 
treatment groups, correlation values had a median of 0.54 (0.37 to 0.77) and for no treatment 
groups 0.73 (0.53 to 0.87); P<0.001). Negative correlation values were uncommon (4.1% 
percent). The distributions of correlation values were heterogeneous (P <0.001) across both 
outcome types (Figure 2) and clinical domains (Figure 3). 
 As shown in Figure 4, the estimated correlation did not appear to be associated with 
increasing followup duration (Spearman rho = -0.07; P = 0.054); this was true both among active 
treatment (rho = -0.03; P = 0.53) and no treatment groups (rho = -0.05; P = 0.46). As shown in 
Figure 5, correlation values were lower with increasing baseline sample size (rho = -0.09;  
P =0.017). This effect was present among no treatment groups (rho = -0.25; P < 0.001), but 
apparently not among active treatment groups (rho = -0.02; P = 0.70).  
 To explore the association of the correlation coefficient with study or group-level 
characteristics we used a multivariable linear mixed effects model. The model identified a 
statistically significant effect of treatment type on the estimated correlation coefficient 
(correlation values were lower by 0.18 in active treatment versus placebo/no treatment groups; P 
< 0.001), after adjusting for baseline sample size, medical field, study duration, and outcome 
measure type, while accounting for clustering of treatment groups within studies. Inclusion of a 
cross-product term between study duration and treatment type did not reveal statistically 
significant effect modification (P=0.60), indicating that there is no differential effect of study 
duration on r values by treatment type. However, inclusion of a product term between baseline 
sample size and treatment type demonstrated statistically significant effect modification 
(P=0.007), suggesting that larger baseline sample size was more strongly associated with lower 
correlation coefficient values in placebo/no treatment groups, compared to active treatment 
groups. 
 
Figure 1. Histograms of the estimated correlation values across study groups 

 
 
  

0

5

10

15

%
 o

f e
st

im
at

es

-1 -.5 0 .5 1

all groups

0

5

10

15

 

-1 -0.5 0 0.5 1

placebo

0

5

10

15

 

-1 -0.5 0 0.5 1

active treatment

estimated correlation



DRAFT DRAFT 

DRAFT 10 DRAFT 

Table 3. Within-group estimated correlation values by group characteristics 

Group characteristic Median 25th, 75th 
percentile Min, Max 

Comparison 
between 
groups 

All groups 0.59 0.40, 0.81 -1.00, 1.00 NA 
        Active treatment 0.54 0.37, 0.77 -1.00, 1.00 P < 0.001 
        Placebo 0.73 0.53, 0.87 -0.03, 1.00  
Outcome types     
        Device measure 0.83 0.61, 0.94 -0.42, 1.00 P < 0.001 
        Lab 0.63 0.39, 0.81 -0.94, 1.00  
        Sign 0.51 0.37, 0.72 -0.77, 1.00  
        Questionnaire/Score 0.51 0.34, 0.68 -1.00, 1.00  
        Symptoms 0.44 0.38, 0.50 -0.07, 0.82  
        Other 0.78 0.71, 0.87 0.38, 1.00  
Clinical domains     
        Nephrology 0.61 0.44, 0.82 -0.88, 1.00 P<0.001 
        Cardiovascular medicine 0.59 0.35, 0.86 -0.94, 0.99  
        Pulmonary medicine 0.77 0.54, 0.94 -1.00, 1.00  
        Diabetology 0.65 0.44, 0.76 -0.17, 0.93  
        Internal medicine/Geriatrics/Primary care 0.73 0.56, 0.83 0.25, 0.91  
        Gastroenterology/Hepatology 0.44 0.23, 0.55 -0.38, 0.99  
        Psychiatry 0.36 0.22, 0.58 0.14, 1.00  
        Neonatology/Pediatrics 0.6 0.46, 0.84 0.23, 0.94  
        Ophthalmology 0.38 0.26, 0.54 -0.42, 0.69  
        Critical care 0.56 0.38, 0.70 -0.07, 0.84  
        Others 0.52 0.34, 0.77 -0.19, 1.00  
Max = maximum; Min = minimum; NA = not applicable. P-values from the Kruskall-Wallis test. 
 
Figure 2. Box plot of estimated correlation values by outcome type 

 
Within each box, horizontal white lines denote median values; boxes extend from the 25th to the 75th 
percentile of each group’s distribution of values; vertical extending lines denote adjacent values (i.e., the 
most extreme values within 1.5 interquartile range of the 25th and 75th percentile of each group); dots 
denote observations outside the range of adjacent values. 
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Figure 3. Box plot of estimated correlation values by clinical domain 

 
Within each box, horizontal white lines denote median values; boxes extend from the 25th to the 75th 
percentile of each group’s distribution of values; vertical extending lines denote adjacent values (i.e., the 
most extreme values within 1.5 interquartile range of the 25th and 75th percentile of each group); dots 
denote observations outside the range of adjacent values. 
CRIT = critical care CVD = cardiovascular disease; DM = diabetes mellitus; GI/HEP = gastroenterology, 
hepatology; IM/GER/PRIM = internal medicine, geriatrics, primary care; NEO/PEDS = neonatology, 
pediatrics; NEPH = nephrology; OPTH = opthamology; PSYCH = psychiatry; PULM = pulmonology. 
 
Figure 4. Scatter plot of estimated correlation values by study duration (square root transformed) 

 
Red lines are locally weighted smoothing lines (LOWESS). 
 

-1
-.5

0
.5

1
E

st
im

at
ed

 c
or

re
la

tio
n

NEPH
CVD

PULM DM

IM
/G

ER/P
RIM

GI/H
EP

PSYCH

NEO/P
EDS

OPTH
CRIT

Othe
rs

-1

-0.5

0

0.5

1

es
tim

at
ed

 c
or

re
al

tio
n

1 day 3 mo 1 yr 3 yr 5 yr

all groups

-1

-0.5

0

0.5

1

  

1 day 3 mo 1 yr 3 yr 5 yr

placebo/no treatment

-1

-0.5

0

0.5

1

  

1 day 3 mo 1 yr 3 yr 5 yr

active treatment

duration (square root scale)



DRAFT DRAFT 

DRAFT 12 DRAFT 

Figure 5. Scatter plot of estimated correlation values by baseline sample size (log-transformed)  

 
Red lines are locally weighted smoothing lines (LOWESS). 
 

Aim 2. In a representative sample of trials, compare values of the net 
change SEs derived from reported within-group SEs with the net 
change SEs derived from estimating the correlation value r. 
 Figure 6 compares the reported within-group SEs for each study group versus SEs calculated 
using different imputed values (ρ = 0, 0.25, 0.50, and 0.75). Imputing a value of 0 (i.e., lower 
than the majority of within-group correlations) leads to overestimation of the within-group SEs 
in the majority of cases (95% overall; 50% by more than 1.5 times). Similarly, when a value of 
0.25 is imputed the SE of the net change is underestimated in the majority of cases (87% overall), 
however the magnitude of underestimation is smaller (39% by more than 1.5 times). When a 
value of 0.5 is imputed (i.e., a value close to the median of the empirical distribution of within-
group correlation values) 62% of the SEs are overestimated and 38% are underestimated.d 
Finally, when a value of 0.75 is imputed the majority of net-change SEs are underestimated 
(68%). 
 

                                              
d Obviously, a value of 0.59 results in 50% of the within-group SEs to be overestimated and 50% to be 
underestimated.  
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Figure 6. Comparison between reported standard errors for within-group changes and standardized bias of 
imputed versus reported standard errors with different values of imputed r 

 
SEcomplete, standard error for the within group change as reported in the studies; SEimputed, standard error 
for the within-group change calculated using imputed correlation values. Dashed horizontal lines indicate 
the line of no difference between reported and calculated (after imputation) standard errors. Extreme 
values (>20 on the x-axis and >2 on the y-axis) have been suppressed to avoid distortion of the graph. 
 

Figure 7 compares the net-change SEs calculated using complete data versus those calculated 
using different imputed values for the within-group correlation (the same value was imputed for 
both groups being compared). The figure shows that when the imputed value is 0 (i.e., lower than 
the majority of within-group correlations) the SE of the net-change is overestimated in the 
majority of cases (97% overall; 78% by more than 1.5 times). Similarly, when a value of 0.25 is 
imputed the SE of the net change is underestimated in the majority of cases (94% overall), 
however the magnitude of overestimation is smaller (73% by more than 1.5 times). When values 
of 0.5 or 0.75 were imputed (i.e., close or higher than the median of the empirical distribution of 
within-group correlation values), SEs were still likely to be overestimated (83% and 70%, 
respectively).e  

                                              
e Recall that we arbitrarily selected pairs of groups from each study and that some studies contributed 
several groups to analyses of within-group change, thus use of the median of the overall distribution of 
correlation values is not guaranteed to “balance” underestimation and overestimation in the net change 
analyses). 
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Figure 7. Comparison between net-change standard errors calculated using complete data and standardized 
bias of net change standard errors calculated using imputed versus reported within-group correlation values 
with different values of imputed r 

 
SEcomplete, standard error for the net-change calculated using the within-group standard errors as reported 
in the studies; SEimputed, standard error for the net-change calculated using within-group standards based 
on imputed values. Dashed horizontal lines indicate the line of no difference between net-change 
standard errors based on the complete data and those based on imputed values. Extreme values (>20 on 
the x-axis and >2 on the y-axis) have been suppressed to avoid distortion of the graph. 

Aim 3. By simulation, explore the impact of imputing a range of 
correlation values, r, on fixed and random effects model meta-
analyses. 
 Here, we present results from simulations of random effects meta-analyses with 10 studies 
for all magnitudes of the treatment effect (0, 0.1, 0.5, or 1), under homogeneity and different 
levels of heterogeneity (τ2 = 0, 0.1, or 0.5), for all control group sample sizes (n  = 20, 50, or 
100), and for different within-group correlation parameter values (ρ = 0, 0.40, 0.59, or 0.81). We 
restrict the presented results to cases where the sample size of the treatment and control groups 
were equal, and the baseline and final measurement variances in the treatment group were also 
equal. The following alternative scenarios produced very similar results and are presented in 
Appendix B: unequal treatment group variances, imbalanced treatment and control group sample 
size, smaller (5 studies) and larger (20 studies) meta-analyses, and using a fixed effect inverse 
variance meta-analysis method. Similarly, results from fixed effects analyses are only presented 
in Appendix B. In these analyses the impact of imputing correlation values was qualitatively 
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similar to that in random effect analyses. However, we note that coverage probabilities were 
generally very poor in the presence of heterogeneity.  
 We first present detailed results for meta-analyses where missing correlation values are 
imputed with a value of r = 0.5, because this represents a standard approach in applied meta-
analyses. We then assess the impact of imputation of a broad range of values, under different 
values of the correlation parameter. 

Imputing a correlation value of 0.5 
 Figures 8 to 11 show the average bias (across 1000 simulations) for four different values of 
the correlation parameter (r = 0, 0.40, 0.59, or 0.81). Each figure shows results for three 
imputation scenarios: 1) complete reporting of data (hollow circles), 2) incomplete data (hollow 
squares), and 3) partially complete data (hollow triangles). In each figure, results are presented 
for three heterogeneity levels (τ2 = 0, 0.1, or 0.5; one scenario per row), three sample sizes (20, 
50, or 100 patients per randomized group; one scenario per column), and four magnitudes of the 
treatment effect (0, 0.1, 0.5, and 1; within each panel).  
 Null correlation parameter (ρ = 0). This set of scenarios represents an extreme case where 
the imputed value (r = 0.5) was substantially larger compared to the parameter value (ρ = 0). The 
value of biases in all scenarios were close to zero (Figure 8). Notably, there were no differences 
across different scenarios with 0, 50, and 100 percent of studies requiring imputation of r. 
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Figure 8. Average bias across 1000 simulated meta-analyses under various scenarios (ρ=0) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the absence of 
bias. 
 
 25th percentile correlation parameter (ρ = 0.40). This set of scenarios where the imputed 
correlation value (r = 0.5) is closer to the parameter value (ρ = 0.40) also demonstrates that there 
is no bias in the estimation of the treatment effect introduced by imputing missing within-group 
correlation values, regardless of extent of heterogeneity, magnitude of the treatment effect, or 
study sample size (Figure 9). The results are nearly identical when all studies report complete 
data, or when 50 or 100 percent of studies do not report correlation values. 
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Figure 9. Average bias across 1000 simulated meta-analyses under various scenarios (ρ=0.40) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the absence of 
bias. 
 
 50th percentile correlation parameter (ρ = 0.59). Similar to the preceding scenario, using an 
imputed value of r = 0.5 when the parameter value ρ = 0.59, does not introduce bias in the meta-
analytic estimate of the treatment effect (Figure 10).  
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Figure 10. Average bias across 1000 simulated meta-analyses under various scenarios (ρ=0.59) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the absence of 
bias. 
 
 75th percentile correlation parameter (ρ = 0.81). In scenarios where the imputed correlation 
value (r = 0.5) is substantially lower than the parameter value (ρ = 0.81), imputation of missing 
correlation values does not introduce bias in the estimate of the treatment effect (Figure 11). 
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Figure 11. Average bias across 1000 simulated meta-analyses under various scenarios (ρ=0.81) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the absence of 
bias. 
 
Coverage 
 Figures 12-15 show the observed coverage probabilities (across 1000 simulations) for four 
different values of the correlation parameter (ρ = 0, 0.40, 0.59, or 0.81). The figures are 
structured in the same way as the bias figures, presenting the same scenarios. The desired 
coverage probability is 0.95, corresponding with the 95 percent confidence interval. Imputing 
correlation values appeared to have a substantial effect on the coverage probabilities in several of 
the simulated scenarios. 
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 Null correlation parameter (ρ = 0). Contrary to the observations regarding bias, imputing 
missing within-group correlation values substantially affected the observed coverage 
probabilities in these scenarios (Figure 12). Generally, coverage probabilities using imputed data 
(squares in figures) were lower compared to meta-analyses using complete data (circles in 
figure). Imputing correlation values (r = 0.5) larger than the parameter value (ρ = 0) 
underestimates the SE of the within-group change,f and consequently the SE of the net changeg, 
resulting in spuriously narrow confidence intervals. Even in the absence of bias in the point 
estimate, narrower confidence intervals lead to lower coverage probabilities. Notably, in the 
presence of moderate (τ2 = 0.1) or severe (τ2 = 0.5) heterogeneity, coverage of the DerSimonian-
Laird summary estimate was poor, regardless of whether studies reported complete data. The 
effect of the summary estimate’s performance on coverage was substantially larger than the 
effect of imputation when τ2 = 0.5.  

                                              
f Recall that 𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 = �𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 + 𝑆𝐸𝑓𝑖𝑛𝑎𝑙
2 − 2𝜌𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐸𝑓𝑖𝑛𝑎𝑙  

g Recall that 𝑆𝐸𝑛𝑒𝑡−𝑐ℎ𝑎𝑛𝑔𝑒 = �𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝,𝑡𝑟𝑒𝑎𝑡𝑒𝑑
2 + 𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2 
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Figure 12. Coverage probabilities across 1000 simulated meta-analyses under various scenarios (ρ=0) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the nominal 
coverage probability of the estimator. 
 
 25th percentile correlation parameter (ρ = 0.40). In these scenarios the imputed value (r = 
0.5) is closer to the true value (ρ = 0.40). Thus, the impact of imputation on the study-specific 
SEs is smaller, leading to smaller differences in coverage probabilities between simulations with 
different percentages of studies requiring imputation (Figure 13). Different levels of coverage 
across the simulations with different degrees of heterogeneity reflect the poor performance of the 
DerSimonian-Laird estimate in the presence of substantial heterogeneity. 
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Figure 13. Coverage probabilities across 1000 simulated meta-analyses under various scenarios (ρ=0.40) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the nominal 
coverage probability of the estimator. 
 
 50th percentile correlation parameter (ρ = 0.59). In these scenarios the imputed value  is also 
very close to the true value (ρ = 0.59), yielding similar results as the scenario above (Figure 14).  
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Figure 14. Coverage probabilities across 1000 simulated meta-analyses under various scenarios (ρ=0.59) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the nominal 
coverage probability of the estimator. 
 
 75th percentile correlation parameter (ρ = 0.81). These scenarios represent cases where the 
imputed value (r = 0.5) is substantially lower than the parameter value (ρ = 0.81). Thus, the 
estimated study-specific SEs of the net change when imputing the within-group correlation is 
likely to be larger compared to those using the complete data (Figure 15). Thus, meta-analyses 
using imputed data will tend to produce wider confidence intervals and greater coverage 
compared to meta-analysis using complete data. In the absence of heterogeneity, imputation 
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produced over-conservative coverage probabilities (higher than 0.95). In the presence of 
heterogeneity (τ2 = 0.1 or 0.5), imputation of correlation values lower than the parameter value 
appeared to partly “counteract” the lower-than-nominal coverage probabilities inherent in the 
DerSimonian-Laird estimate to some extent. 
 
Figure 15. Coverage probabilities across 1000 simulated meta-analyses under various scenarios (ρ=0.81) 

 
SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation parameter value; 𝜏2, between-
study variance of the treatment effect.  = meta-analyses where within-group correlations were reported 
from all studies;  = meta-analyses where 50% of the within-group correlations were missing;  = meta-
analyses where all within-group correlations were missing. Horizontal dashed lines denote the nominal 
coverage probability of the estimator. 
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Mean square error (MSE) 
 Figures 16 to 19 show the MSE (across 1000 simulations) for four different values of the 
correlation parameter (ρ = 0, 0.40, 0.59, or 0.81). The figures are structured in the same way as 
the bias figures, presenting the same scenarios. Generally, imputing some (50 percent) or all 
correlation values did not have an appreciable impact on the summary estimate’s MSE. 
Furthermore, in all scenarios assessed it was clear that between-study heterogeneity and, to a 
smaller extent study sample size, were the key determinants of MSE. 
 All correlation parameters (ρ = 0, 0.40, 0.59, and 0.81). The figures show that, regardless of 
the imputed correlation parameters, the imputation approach did not appreciably impact the MSE. 
Differences between scenarios where different percentages of available studies required 
imputation were much smaller in magnitude compared to the impact of between-study 
heterogeneity (across columns in the figure) and sample size (across rows). 
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Figure 16. Mean squared error across 1000 simulated meta-analyses under various scenarios (ρ=0) 

 
MSE, mean squared error; SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation 
parameter value; 𝜏2, between-study variance of the treatment effect.  = meta-analyses where within-
group correlations were reported from all studies;  = meta-analyses where 50% of the within-group 
correlations were missing;  = meta-analyses where all within-group correlations were missing. 
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Figure 17. Mean squared error across 1000 simulated meta-analyses under various scenarios (ρ=0.40) 

 
MSE, mean squared error; SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation 
parameter value; 𝜏2, between-study variance of the treatment effect.  = meta-analyses where within-
group correlations were reported from all studies;  = meta-analyses where 50% of the within-group 
correlations were missing;  = meta-analyses where all within-group correlations were missing. 
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Figure 18. Mean squared error across 1000 simulated meta-analyses under various scenarios (ρ=0.59) 

 
MSE, mean squared error; SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation 
parameter value; 𝜏2, between-study variance of the treatment effect.  = meta-analyses where within-
group correlations were reported from all studies;  = meta-analyses where 50% of the within-group 
correlations were missing;  = meta-analyses where all within-group correlations were missing. 
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Figure 19. Mean squared error across 1000 simulated meta-analyses under various scenarios (ρ=0.81) 

 
MSE, mean squared error; SS, sample size; SSR, sample size ratio; VR, variance ratio; 𝜌, correlation 
parameter value; 𝜏2, between-study variance of the treatment effect.  = meta-analyses where within-
group correlations were reported from all studies;  = meta-analyses where 50% of the within-group 
correlations were missing;  = meta-analyses where all within-group correlations were missing. 
 

Imputing alternative correlation values 
 To illustrate the impact of imputing alternative values when the within-group correlation is 
not reported, we use two illustrative simulation scenarios: one with no heterogeneity (τ2 = 0) and 
one with moderate heterogeneity (τ2 =0.1). Both scenarios were based on meta-analyses of 10 
studies, with 100 patients in the treatment and control groups, where the variance in the 
treatment group was not affected by treatment, over alternative values of the correlation 
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parameter (ρ = 0, 0.40, 0.59, or 0.81). For 1000 meta-analyses simulated under these scenarios, 
we explored the impact of imputing correlation values ranging from -1 to 1, in steps of 0.10.  
 
Bias  
 Consistent with the previously examined simulation scenarios, imputations of different 
values for the study-specific correlation when the information is missing from 50 or 100 percent 
of the included studies does not result in bias (average bias was 0 for all imputed values; data not 
shown). 
 
Coverage probabilities  
 Figure 20 presents the results for observed coverage probabilities across 1000 simulated 
meta-analyses, when the nominal coverage level is 0.95. As expected, imputation of different 
correlation values had substantial impact on the coverage probabilities of the summary estimate. 
For all tested correlation parameter values (ρ = 0, 0.40, 0.59, or 0.81), imputing larger values 
(closer to 1) reduced the coverage probability. In the case of no between-study heterogeneity (τ2 
=0), coverage probabilities were close to the nominal level (0.95) when the imputed value was 
close to the parameter value. When the imputed value was lower than the parameter value 
coverage was higher than nominal; the contrary was observed when the imputed value was larger 
than the parameter value (i.e. coverage was lower than the nominal level).   
 In the presence of moderate heterogeneity (τ2 =0.1) coverage probabilities were lower than 
nominal for all imputed and parameter values of the correlation. In these scenarios coverage was 
greater (and closer to nominal) when lower imputed values were used. 
 
Figure 20. Coverage probabilities for alternative imputed correlation values for different values of the 
correlation parameter (meta-analysis of 5 studies) 

 
This figure illustrates the impact of imputing alternative values when all studies in a meta-analysis do not 
report the within-group estimates of the correlation, for 4 different parameter values (𝜌 = 0, 0.40, 0.59, or 
0.81), under homogeneity (left panel) or heterogeneity (right panel) of treatment effects across studies. 
The horizontal red lines indicate the nominal coverage probability.  
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MSE 
 Consistent with the previously examined simulation scenarios, imputation of different values 
for the within-group correlation, does not appreciably affect MSE (data not shown). 

Summary of key findings 
• In a large dataset of trials allowing the calculation of the within-arm correlation values, 

we found that estimated correlation values are positive in the vast majority of cases, 
regardless of the specific outcome measure and duration of followup.  

o Median (IQR) within-group correlation across studies 0.59 (0.40, 0.81).  
o Correlation values were statistically significantly higher for no treatment groups 

(median 0.73) than for active treatments (median 0.54; P<0.001). 
o Correlation values were statistically significantly different across different 

outcome types and different clinical domains. 
o There was no clear association between followup duration and correlation value 

for either active treatments or no treatment groups; however, correlation values 
were statistically significantly lower with increasing sample size of no treatment 
groups, but not active treatment groups. 

• The choice of imputed correlation values can have a substantial impact on the estimate of 
the within-group and net-change SEs. Not unexpectedly, the difference between SEs 
calculated using complete study data versus those based on imputed correlation values 
depends on the difference of the imputed value from the study estimate of the correlation.  

• In simulation studies of meta-analyses with different “true” correlation values across a 
number of representative scenarios we found that: 

o Imputation of any value for the within-group correlation parameter does not result 
in bias in the estimation of the meta-analyzed summary treatment effect. 

o The imputed value affects the coverage probability of the meta-analytic summary 
estimate: imputing values larger than the “true” value produces coverage lower 
than that attained with complete data; imputing values lower than the “true” value 
produces coverage greater than that attained with complete data. However, the 
DerSimonian-Laird meta-analytic estimator often has poor coverage in the 
presence of moderate to large heterogeneity; thus, the impact of different imputed 
correlation values has a relatively small effect on coverage in settings of 
heterogeneous meta-analyses. 

o Accuracy, as represented by MSE, was not appreciably impacted by the specific 
imputation approach. 

 

Discussion 
 

The net difference in the change from baseline is a frequently used metric in meta-analysis of 
continuous outcomes, but statistics sufficient for meta-analysis are commonly reported only 
incompletely. Specifically, the variance of this metric is often not possible to calculate with 
algebraic computations, because the within-arm correlations are not reported. Imputing the 
missing correlations (and by extension the missing variances) is arguably preferable to excluding 
the respective studies from the meta-analysis.2,7,8 We report the empirical distribution of within-
arm correlation coefficients from a large number of studies where such information was 
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algebraically extractable. We explore the effects of imputing a range of values for the correlation 
coefficient in a simulation analysis. To our knowledge, this analysis is the first such exploration 
of real-life within-group correlations and of the effect of imputing different correlations in meta-
analyses. While we analyzed a large body of comparative studies, we acknowledge that studies 
available to us from our previous systematic reviews and from clinicaltrials.gov may not be 
completely representative of studies encountered in a typical systematic review. In particular, 
nephrology studies are overrepresented in our empirical dataset. Nevertheless, it appears unlikely 
that our included studies were a biased sample. The main limitation to a determination of actual 
correlation values in published studies is the inherent error involved in back-calculating 
correlation values from imprecise reported standard deviations of SEs. The fact that 5 percent of 
calculated values were implausible (outside the bounds of -1 to +1) indicates that data extracted 
from publications may not always be accurate or sufficiently precise due to rounding errors. 
However, there is no reason to think that our estimates were biased toward under- or over-
estimating correlation values. Furthermore, while we covered many scenarios in our simulations, 
a large number of other scenarios could have been investigated (including using random-effects 
models different than DerSimmonian and Laird, using different values of rho for treated and 
untreated arms, and using numerous other imputed values of rho). However, we believe that our 
simulations cover the range of greatest interest to applied meta-analyses. 

We evaluated 811 within-group correlation values from 123 studies with 281 study groups. 
As expected, the vast majority (>95%) were positive. For most realistic clinical scenarios, 
baseline and final measurements in the same individual will tend to be similar (be positively 
correlated with each other). We have not identified a realistic scenario where, in contrast, one 
would expect baseline and final values to be negatively correlated (i.e., r <0), though such 
scenarios may very well be possible. There are several possible explanations for the few negative 
correlations in our empirical sample. First, these are sample estimates of unobserved true 
correlation coefficients, but because of random variation they have negative values, even though 
the true correlation was not negative. Second, we derived the correlation estimates using 
algebraic calculations from quantities reported in the papers, and thus rounding errors or 
inconsistencies and mistakes in the papers themselves may also play a role. Third, our 
calculations assumed normal distributions, which may be ill-justified for some studies. Finally, 
some may correspond to clinical scenarios where one would expect a negative correlation 
between baseline and final measurements, although on inspection of the database we did not 
recognize such a scenario.  

We describe variation in the distribution of the within-group correlation values by the 
characteristics of the outcomes, the interventions, and the studies. For example, on average, 
correlation values were higher in control study groups with no active intervention compared to 
study groups with active interventions. This is expected, as an intervention introduces an 
additional variance component (related to the variability of the treatment effect), reducing the 
observed within-group correlation in treated groups. On average, the difference is small, and in 
our judgment does not justify differential imputation of correlation values in study groups with 
active versus inactive or no intervention. Similarly, though we found differences in correlation 
values across different clinical domains and different outcome types, we do not believe this 
analysis supports imputing different correlation values for different clinical domains or outcomes. 
Overall, we would not recommend selecting an imputation value (e.g., from a regression) using 
the characteristics of the outcome, the study group, and the study as predictors. Our sampling 
scheme was based on convenience of accessing the information of interest, and many types of 
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outcomes, diseases, interventions and populations are not included. Therefore, predictions from 
regression models built in this sample are probably not generalizable.  
 So how should meta-analysts go about imputing the missing correlations? Our simulation 
studies indicate that the choice of imputed correlation value primarily affects the coverage 
probabilities of the final meta-analysis estimate, rather than its bias. In other words, the choice of 
imputed r value affects the probability that the “true” estimate falls within the 95 percent 
confidence interval of the summary estimate, but is unlikely to bias summary estimate in one 
direction or the other. The absence of bias is expected because: 1) the correlation of baseline and 
final values is not use in the calculation of the study-specific effect size; and 2) the variance of 
the study specific effect size (and, consequently, the corresponding weight) is not dependent on 
its value in the case of meta-analysis of continuous outcomes. Thus, even though the imputation 
of missing correlation values is bound to affect the weights of the study specific point estimates 
(because it affects the SE of the net change), it does not introduce bias in the estimate of the 
treatment effect. However, the farther the imputed correlation value is from the (unknown) true 
value, the larger the impact on the coverage probability of the meta-analysis estimate. Imputing a 
larger-than-true value results in smaller study variances, and imputing a lower-than-true value 
results in larger study variances. Even so, the effect on the coverage probabilities is relatively 
small, and arguably inconsequential for many meta-analyses. Although not the focus of the 
current paper, our simulations demonstrated that fixed effects meta-analysis has poor coverage 
when the data are derived from truly heterogeneous studies. The DerSimonian-Laird method had 
much better performance, even though its coverage probability in the presence of moderate to 
severe heterogeneity was also lower than nominal when the number of studies was small. Sub-
optimal coverage with increasing between-study heterogeneity has been reported in previous 
simulation studies of the DerSimonian-Laird method.4-6 

Based on the above, including our finding of a median correlation value across studies of 
0.59 and our simulations of meta-analyses with convenience correlation value estimates of 0.25, 
0.5, and 0.75, we propose the following algorithm for meta-analyses of continuous outcomes 
where the net difference in the change from baseline is the metric of choice, and within-arm 
correlation values require imputation due to insufficiently reported data (Table 4) 
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Table 4. Proposed algorithm for handling studies with missing data for standard error of the net change 
Step* Description Comment or rationale Strength† 

[High/Low] 
1 Include all studies in the main 

analysis by imputing missing 
within-group correlations 

• Maximizes use of available information 
• When only the within-group correlation is missing, the 

within-group variance can still be estimated within an 
interval. This partial information should not be discarded 

• In most cases, the optimal imputation value will be 
unknowable. 

High 

2 If a majority of studies report 
within-group correlations, use 
the median correlation as a 
main analysis.  

• This empirical imputation is arbitrary, as there is no 
guarantee that studies requiring imputation would have 
similar values.  

• Choosing the lowest observed positive correlation, or the 
25th percentile of the observed correlations results in 
greater study variances and thus lower weights in a meta-
analysis.  

• However, we see no particular reason to favor any 
particular percentile (e.g., median versus 25th percentile) 

Low‡ 

3 If a majority or all studies do 
not report within-group 
correlations, and in the 
absence of other relevant 
data, impute a value of 0.5 to 
0.6 for the main analysis. 

• The median value in the empirical sample was 0.59. 
• Being in the middle of the domain of values for positive 

correlations, imputed values of 0.5 to 0.6 minimizes the 
difference from the unknown true value, and thus the 
effect on the coverage probability of the meta-analysis 
estimate 

• For most real-life scenarios we expect non-negative 
within-group correlations 

• We see no argument in favor of using different correlation 
values for each study  

Low  

4 Perform sensitivity analyses 
for a range of plausible 
values 

• In our simulation studies imputing a value of 0.5 has a 
small effect on coverage probabilities (and no effects on 
bias) over a wide range of scenarios. 

• We conjecture that most often sensitivity analyses will not 
change meta-analysis conclusions.  

• Reasonable to include 0 as the lower bound. 
• In the absence of external information, the upper bound 

could be 0.8 (75th percentile in our empirical sample) 

Low§ 

In place of step 2, others have proposed the use of multiple imputation, if the meta-analysis has a large 
number of studies and a majority of them report the correlation. 
* Step 1 should be done in all cases where meta-analyses of net-changes are performed. Steps 2 to 4 
should be considered in order of preference. 
† High strength: Failure to follow recommendation may result in substantial bias. Low strength: Choice of 
whether recommendation is followed is unlikely to alter or bias the meta-analysis. This strength scale was 
developed by the authors and is arbitrary. We expect it to be described more fully in a forthcoming article. 
‡This step has face validity, but was not addressed in this report. It is also proposed by Wiebe et al.2  
§ This is good practice, but failure to perform sensitivity analyses is unlikely to result in misleading 
conclusions. 
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