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Abstract 
 

Background: Multiple methods are available for meta-analysis of sensitivity and 
specificity pairs reported from test accuracy studies. Regression methods can be used to 
construct summary (meta-analytic) receiver operating characteristic (sROC) curves. Little is 
known about the impact of alternative methods on applied meta-analysis results.  

Methods: We constructed a database of PubMed-indexed meta-analyses (1984-2003) 
from which 2×2 tables for each included primary study could be readily extracted. We evaluated 
the following methods for meta-analysis of sensitivity and specificity: fixed and random effects 
univariate meta-analyses using inverse variance methods; univariate random effects meta-
analyses with restricted maximum likelihood (REML, both using a normal approximation and 
the exact binomial likelihood to describe between-study variability); bivariate random effects 
meta-analyses (both using a normal approximation and the exact binomial likelihood to describe 
between-study variability). The bivariate model using the exact binomial likelihood was also fit 
using a fully Bayesian approach. We constructed sROC curves using the Moses-Littenberg fixed 
effects method (weighted and unweighted) and the Rutter-Gatsonis hierarchical sROC (HsROC) 
method. We also obtained alternative HsROC curves corresponding to different underlying 
regression models [logit-true positive rate (TPR) over logit-false positive rate (FPR); logit-FPR 
over logit-TPR; difference of the logit-TPR and logit-TPR over their sum; and major axis 
regression of logit-TPR over logit-FPR]. 

Results: We re-analyzed 308 meta-analyses of test performance. Fixed effects univariate 
analyses produced estimates with narrower confidence intervals compared to random effects 
methods. Methods using the normal approximation (both univariate and bivariate, inverse 
variance and REML) produced estimates of summary sensitivity and specificity closer to 0.5 and 
smaller standard errors compared to methods using the exact binomial likelihood. Point estimates 
from univariate and bivariate random effects meta-analyses were similar when performing 
pairwise (univariate vs. bivariate) comparisons, regardless of the estimation method (inverse 
variance, REML with normal approximation, or REML with the exact binomial likelihood for 
estimation). Fitting the bivariate model using REML and fully Bayesian methods produced 
almost identical point estimates of summary sensitivity and specificity; however, Bayesian 
results indicated additional uncertainty around summary estimates. The correlation of sensitivity 
and specificity across studies was poorly estimated by all bivariate methods. The sROC curves 
produced by the Moses-Littenberg and Rutter-Gatsonis models were similar in most examples. 
Alternative parameterizations of the HsROC regression resulted in markedly different summary 
lines in a third of the meta-analyses; this depends to a large extent on the estimated covariance 
between sensitivity and specificity in the bivariate model. 
 Conclusion: Meta-analysis of sensitivity and specificity using a normal approximation 
produced estimates that were lower compared to meta-analysis using the exact binomial 
likelihood. Bivariate models are more theoretically motivated compared to univariate analyses 
and allow estimation of the correlation between sensitivity and specificity. Bayesian methods 
fully quantify uncertainty and their ability to incorporate external evidence (in the form of a 
prior) may be particularly useful for parameters that are poorly estimated in the bivariate model 
(such as the correlation between sensitivity and specificity). Alternative sROC curves provide 
useful global summaries of test performance; they can differ between them because each is based 
on different assumptions. 
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Introduction 
 Medical tests are used every day for guiding diagnosis, predicting the future 
course of disease, and guiding treatment selection. The effects of tests on clinical 
outcomes are indirect, through their influence on physicians’ diagnostic thinking and 
treatment decisionmaking (1). Comparative studies of testing versus no testing that can 
answer the overarching question of test effectiveness (clinical utility) are rarely 
performed. Because of this, assessment of medical tests often relies only on the 
evaluation of test “accuracy”,a or better test performance, typically measured by 
sensitivity and specificity (clinical validity of tests). Even when studies of clinical utility 
are available, systematic reviews of test performance are an important component of any 
comprehensive evidence assessment of a medical test (2,3).  

In most cases tests are used to classify patients into two mutually exclusive and 
exhaustive groups (“test positive” and “test negative”) – positive test results indicate that 
patients are more likely to have the condition of interest and should be targeted for 
additional diagnostic investigation or considered for therapeutic intervention.b In such 
cases, test accuracy can be expressed as the ability to identify as “test positives” 
individuals with disease (sensitivity) and as “test negatives” individuals with no disease 
(specificity). Additional accuracy metrics, such as the area under the receiver operating 
characteristic (ROC) curve, the diagnostic odds ratio (4), or the Q* statistic (the point on 
the ROC curve where sensitivity equals specificity), are often reported in primary studies 
(5). 

Individual studies of test accuracy tend to be small and are often conducted in 
diverse settings. Systematic reviews of medical test studies offer a natural framework for 
evidence synthesis. When the aim is to increase precision or quantitatively assess the 
impact of study-level characteristics on test sensitivity or specificity, meta-analytic 
methods can be used to combine the results of independent studies into summary 
estimates of accuracy or to identify modifiers of accuracy through meta-regression (6,7).  

Meta-analysis of studies of test accuracy presents several challenges to systematic 
reviewers. First, meta-analysis of sensitivity and specificity requires modeling a 
multivariate outcome (sensitivity and specificity reported from each study) (5). Second, 
joint modeling of sensitivity and specificity needs to take into account the correlation of 
these estimates across studies induced by threshold effects (8,9). Third, studies often 
produce heterogeneous results, necessitating the use of random effects models when the 
interest is to generalize beyond the observed data (10,11). Analyses that fail to take into 
account threshold effects or between-study variability may produce incompatible 
estimates of sensitivity and specificity or spuriously precise estimates of test accuracy.  

In a previous empirical investigation [citation to be provided post peer review], 
we found that the most common test performance metrics used in meta-analysis were 
sensitivity and specificity; in the majority of reviews only results from univariate 
                                                 
a Here we use the term “test accuracy” to denote “test performance”. We do not refer to the metric 
“accuracy”, which is the proportion of correct test classifications (true positives and true negatives) out of 
the total sample size in a study.  
b Although some tests produce ordinal classifications (e.g., high-intermediate-low probability of disease) or 
are used as components of more complex testing algorithms, the vast majority of systematic reviews and 
meta-analyses focus on binary classification. 
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analyses were reported. Additionally, many meta-analyses used the summary receiver 
characteristic operating (sROC) curve method proposed by Moses and Littenberg (8,9) to 
assess test performance. This method is based on a regression of the difference of the 
logit-transformed sensitivity and specificity (i.e., the diagnostic log-odds ratio) on their 
sum. Although this method accounts for between-study correlation of sensitivity and 
specificity, it is almost always implemented in a fixed effect framework. Furthermore, it 
ignores the exact binomial distributions of the test results among diseased and non-
diseased individuals or the uncertainty in the measurement of the independent variable 
(the sum of the logit-sensitivity and logit-specificity) in the regression model. Recently, 
several authors have advocated using bivariate models based on hierarchical regression 
(10,12-14). These methods can be used to estimate summary sensitivity and specificity 
(i.e., a summary point on the ROC plane) or to fit a line describing the bivariate 
distribution of sensitivity and specificity (i.e., a hierarchical sROC curve). These meta-
analysis models have now been implemented in major statistical packages (15,16) and are 
becoming increasingly popular in meta-analytic practice (17). These implementations are 
based on maximization of likelihoods, but Bayesian methods have also been proposed 
(12,18,19). Limited empirical work suggests that these approaches yield similar 
conclusions in applied meta-analysis examples (16). Although theoretical arguments 
provide support for the use of bivariate random effects methods for the typical case of 
binary testsc, the existing evidence on the practical implications of alternative methods is 
limited to small empirical comparisons (typically based on a few meta-analysis 
examples) (10,20,21). Furthermore, divergent conclusions have been drawn from 
considering theory and available evidence: for example, one group of methodologists 
suggested that “hierarchical models are necessary” (21) whereas another that “differences 
between univariate and bivariate models […] may not be large” (22). 

This report is the second in a series of three on meta-analysis of test accuracy, 
conducted by the [redacted] Evidence-based Practice Center under contract with the 
Agency for Healthcare Research and Quality (AHRQ). For the current project we sought 
to perform a large-scale empirical comparison of alternative meta-analysis methods for 
sensitivity and specificity and for constructing sROC curves.d This report aims to address 
the following aims by using a previously established database of meta-analytic datasets:  

 
• To compare univariate (one outcome at a time) and bivariate (joint analysis of 

two outcomes) methods for meta-analysis of sensitivity and specificity. 
• To compare inverse variance (DerSimonian-Laird), restricted maximum 

likelihood (REML) and Bayesian methods for random effects meta-analysis of 
sensitivity and specificity. 

• To compare methods using a normal approximation versus those using the exact 
binomial likelihood for meta-analysis of sensitivity and specificity. 

• To compare alternative statistical models for constructing meta-analytic sROC 
curves. 

                                                 
c Similar arguments can be made in support of the use of extensions of these methods to account for 
multiple thresholds or multiple index tests; however, the majority of published meta-analyses are limited to 
the binary classification case. This report exclusively focuses on this most common case.  
d Other reports in this series include a comprehensive survey of methods and reporting in meta-analyses of 
test accuracy and the development of novel methods for the analysis of diagnostic test networks. 
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Methods 

Construction of a database of meta-analysis datasets 
 We used a previously described [citation to be provided post peer review] 
database of PubMed-indexed English-language meta-analyses of test accuracy (published 
between 1984 and 2003) to identify those that reported adequate information to 
reconstruct the 2×2 tables of included primary studies. This was done to increase the 
efficiency of the data extraction process by avoiding having to review all the primary 
papers included in each meta-analysis. The details of searches, abstract and full text 
screening methods, and selection criteria used to generate the original database are 
presented in two previous AHRQ reports produced by the [redacted] EPC. A list of 
included studies in provided in Appendix A.  

From each meta-analysis we extracted the first author and year of publication, the 
number of included studies, and the number of index and reference standard tests 
reviewed. For each diagnostic outcome included in meta-analysis and each included 
study, we extracted the 2×2 table of true positive, false positive, true negative and false 
negative results, as defined by the original meta-analysis. We used these data to calculate 
descriptive statistics for the database, including descriptive statistics for the number of 
included studies in each meta-analysis, the number of patients in each component study, 
test sensitivity and specificity, and prevalence of the diagnostic outcomes of interest. We 
then repeated the meta-analyses using alternative statistical methods, as described below.  

Statistical analyses 
Meta-analyses of sensitivity and specificity aim to provide helpful summaries of 

the findings of individual studies. Sometimes, a helpful way to summarize individual 
studies is to provide a “summary point”, a summary sensitivity and a summary 
specificity. For example, a summary point is helpful when the results of the studies are 
relatively similar, and when the studied tests do not have different explicit thresholds for 
positive results. Other times, it is more helpful to synthesize data using a “summary line” 
that describes how the average sensitivity changes with the average specificity. For 
example, a summary line may be a more helpful way to synthesize data when studies 
have different explicit thresholds and their results range widely. Of course, choosing the 
most helpful summary is subjective, and both summaries can be reasonably employed as 
they provide complementary information. Here we do not make any effort to choose the 
most helpful summary. We analyze all examples with all methods.  

Meta-analysis of sensitivity and specificity (summary point) 

Univariate meta-analysis methods 
 We performed univariate (one outcome at a time) meta-analyses of sensitivity and 
specificity using standard fixed and random effects inverse variance models to synthesize 
logit-transformed sensitivity and specificity values. For random effects inverse variance 
analyses, between-study heterogeneity was estimated using a non-iterative method (the 
DerSimonian-Laird method of moments (23)) and with an iterative method (REML). We 
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used a continuity correction of 0.5 when the observed count was zero for any of the cells 
of the 2×2 table, and only for the studies with a zero cell. We also performed univariate 
random effects analyses with the exact binomial likelihood using random effects logistic 
regression (a random intercept model). This model was also fit using REML.  

Bivariate meta-analysis methods 
 We fit bivariate random effects meta-analysis models that allow for correlation of 
sensitivity and specificity at the between-study level. These are hierarchical models that 
describe the observed variability using statistical distributions of data at two levels: a 
within-study- level and a between-study level. We fit two variants of the bivariate model. 
The first used a normal approximation for the statistical distribution of 2×2 cell counts at 
the within-study level (for the logit transformed sensitivities and specificities) and the 
second used the binomial distribution (exact likelihood). 

At the between-study level, both variants assume that the (true) logit-transformed 
sensitivities and specificities follow a bivariate normal distribution centered at their 
summary estimates and with a covariance matrix that represents the between-studies 
component of the variability of the data. For the normal approximation variant of the 
model, we estimated the covariance matrix (equivalently, the correlation) using the non-
iterative the estimator proposed by Jackson  (a multivariate generalization of the 
DerSimonian-Laird model) (24), as well as iteratively by REML (14). For the analysis 
using the exact binomial likelihood we used random effects logistic regression fit with 
REML (10,20).  
 The bivariate model with the exact binomial likelihood for within-study 
variability was also fit using a fully Bayesian approach, where all parameters of interest 
were treated as random variables. This required the specification of prior distributions for 
all parameters; we used non-informative priors for all analyses to encode our uncertainty 
about model parameters. The model structure used for our analyses is presented in 
Appendix B. For each meta-analysis we ran 10,000 iterations and then assessed 
convergence by inspecting trace plots and calculating the Brooks-Gelman-Rubin statistic. 
We considered nodes to have converged when the Brooks-Gelman-Rubin statistic was 
less than 1.10. Additional iterations were run until convergence was achieved (if 
convergence was not reached after 10,000). To sample from the posterior distribution of 
parameters of interest we ran the model for an additional number of iterations equal to 
half the number that had been required to achieve convergence. From these posterior 
distributions we obtained the median and 95% credibility intervals for parameters of 
interest. We assessed robustness to alternative prior distributions for the variance 
components and the between-study correlation of sensitivity and specificity (see 
Appendix B).  
 Table 1 summarizes the methods for meta-analysis of sensitivity and specificity 
assessed in this report. 
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Table 1: Methods for meta-analysis of sensitivity and specificity used in this report 
Modeling of within-

study variability 
Meta-analysis 

method 
Univariate meta-analysis 

(estimation of heterogeneity) 
Bivariate meta-analysis 

(estimation of heterogeneity) 
Approximate (normal for 

logit-transformed 
sensitivity, specificity) 

Inverse variance • Fixed effects  
• Random effects (DL) 

• Random effects (multivariate 
DL)* 

Approximate (normal for 
logit-transformed 

sensitivity, specificity) 

Likelihood 
maximization • Random effects (REML) • Random effects (REML) 

Exact (binomial) Likelihood 
maximization • Random effects (REML) • Random effects (REML) 

Exact (binomial) 
Bayesian meta-
analysis with non-
informative priors 

Not done • Random effects (MCMC) 

* Jackson generalization of the non-iterative DerSimonian and Laird method. 
DL = DerSimonian-Laird; MCMC = Markov chain Monte Carlo; REML = restricted maximum 
likelihood. 

Meta-analytic sROC curves (summary lines) 
 sROC curves depict graphically the relationship between average sensitivity and 
average specificity and provide a visual summary of overall test performance. The most 
commonly used method for generating meta-analytic sROC curves is that proposed by 
Moses and Littenberg, based on a regression of the difference of the logit-transformed 
sensitivity and specificity over their sum(8,9). We implemented both unweighted and 
weighted versions of this method and compared their results to the more theoretically 
motivated hierarchical regression methods (see below). For the weighted Moses-
Littenberg sROC regression we used weights equal to the inverse of the variance of the 
diagnostic odds ratio of each study and calculated the sROC parameters using variance-
weighted least squares regression, in a generalized least squares framework. 

Hierarchical sROC (HsROC) 
 Rutter and Gatsonis proposed HsROC meta-analysis methods to address the 
limitations of the Moses-Littenberg sROC approach (12). As noted by Arends 2008 (25) 
several alternative parameterizations of the HsROC curve can be produced from the 
bivariate meta-analysis model, the Rutter-Gatsonis HsROC model being one of them 
(12). Different formulations of the HsROC represent alternative ways to describe the 
bivariate distribution of sensitivity and specificity, and can result in curves of different 
shape. We used the output of the bivariate meta-analysis model (fit both using maximum 
likelihood and Bayesian methods) to construct these curves, as described previously 
(25,26). Briefly, we obtained estimates of the intercept and slope of the ROC line (in the 
logit space) based on the following approaches: the regression of logit-sensitivity on 
logit-false positive rate; the regression of logit-false positive rate on logit-sensitivity; the 
regression of the difference of logit-sensitivity and logit-false positive rate on their sum); 
and a major axis regression of logit-sensitivity on logit-false positive rate (a regression 
obtained by minimizing the distance between data points and the fitted line). Additional 
details about these models are presented in Appendix C. 
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Comparisons between alternative methods 
 We compared summary sensitivity, specificity and the width of the corresponding 
confidence (of credibility) intervalse with scatter plots and absolute difference 
graphs.(28) We also graphed the ROC curves produced by the various methods and 
compared their results visually. 

With the exception of fixed effect univariate analyses, all other models used in 
this report assume that the study-specific parameters (sensitivity or specificity) are 
random effects (i.e., they differ by study). Generalizing outside the observed studies is a 
key aim for most meta-analyses, and thus random effects models are appropriate. For this 
reason, we focus on random effects models in this report.  

Software 
 All non-Bayesian meta-analyses were performed in Stata/IC (version 12; Stata 
Corp., College Station, TX). Bayesian analyses were implemented in WinBugs (29) 
(version 1.4.3; MRC Biostatistics Unit, Cambridge, UK), through calls from Stata or R 
(version 2.13.2; R Foundation for Statistical Computing, Vienna, Austria). Graphs were 
generated in Stata. 

Results 
Included studies 

We included 157 systematic reviews reporting 308 meta-analyses (published 
between 1988 and 2003) for which complete data to reconstruct 2×2 tables of the 
individual studies were available. The meta-analyses contributing data to this empirical 
comparison represent approximately 59% of all test accuracy meta-analyses published 
during the study period and identified through our searches. We treated meta-analyses as 
independent observations even when they had common studies. The small amount of 
overlap does not introduce appreciable bias because overlap in studies is limited (between 
meta-analyses originating from the same systematic review) and uncommon (between 
systematic reviews). 

The median number of studies in the included meta-analyses was 11 (25th-75th 
percentile: 8-18). Included primary studies were generally small (median of the median 
number of affected individuals across meta-analyses = 30; median of the median number 
of affected individuals across meta-analyses = 62). Additional characteristics of the 
included meta-analyses and their component studies are presented in Table 2.  
  

                                                 
e For all bivariate analyses we obtained non-simultaneous confidence intervals for estimates of sensitivity 
and specificity. One could opt to obtain simultaneous confidence intervals (27) instead; however this is not 
common practice in meta-analyses of test accuracy and has not been implemented in the existing software 
routines in common use. Generally, simultaneous confidence intervals tend to be wider than non-
simultaneous confidence intervals. 
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Table 2: Descriptive characteristics of test accuracy meta-analyses 
Characteristics Median 25th percentile 75th percentile Minimum Maximum 
Number of included primary 

studies 11 8 18 6 61 

Median number of affected 
individuals (cases)*  30 17 46 2 468 

Median number of unaffected 
individuals (controls)* 62 29 108 8 9979 

Median ratio of affected 
(cases) to unaffected 
(control) individuals 

0.46 0.21 1 0.002 15.14 

Median number of “positive” 
test results 32 19 60 3 549 

Median number of “negative” 
test results 59 30 99 7 9415 

Median ratio of “positive” to 
“negative” test results 0.52 0.30 1 0.01 7.17 

Median TP count 21 12 34 2 464 
Median FP count 7 3 19 0 491 
Median FN count 6 2 11 0 157 
Median TN count 48 24 87 5 9411 
“Crude” † sensitivity 0.78 0.58 0.88 0.15 0.99 
“Crude”† specificity 0.86 0.77 0.93 0.18 1 

* Based on the reference standard test used in each study. 
† Calculated by summing the numerators and denominators of included studies (this is equivalent 
to a fixed effects meta-analysis using the exact binomial likelihood). 
 
 Some investigators have suggested that problems with convergence are a major 
concern when fitting the bivariate models for meta-analysis of test accuracy (22). In total, 
for 10 of 308 meta-analyses (3%) we could not obtain estimates from all methods listed 
in Table 1 and they have been excluded from the comparisons presented in the following 
sections.  

Meta-analysis of sensitivity and specificity 

Fixed versus random effects univariate inverse variance meta-
analyses 
 Figure 1 compares the point estimates (logit-transformed) and confidence interval 
widths for univariate meta-analyses of sensitivity and specificity using fixed versus 
random effects inverse variance models. Overall, point estimates from the two methods 
are similar; however, the estimated uncertainty around each estimate is very different 
between methods. This is because the random effects model incorporates between-study 
variability. We argue that meta-analysts are (almost) always interested in generalizable 
(to unobserved studies) summary estimates; in such cases random effects models are 
more appropriate, particularly in the presence of between-study heterogeneity (which is 
common in diagnostic test reviews). All subsequent comparisons in this report are limited 
to random effects models.  
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Figure 1: Comparison of point estimates and standard errors of summary logit-
transformed sensitivity and specificity (univariate DL random effects versus fixed effect 
inverse variance) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate random and fixed effects meta-analyses of sensitivity 
and specificity. CI = confidence interval; DL = DerSimonian-Laird. 
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UNIVARIATE RANDOM EFFECTS META-ANALYSIS METHODS 

This section compares the results of alternative univariate meta-analysis methods 
for sensitivity and specificity.  

Inverse variance versus REML univariate random effects meta-
analyses (normal approximation) 

Figure 2 compares the point estimates (logit-transformed) and confidence interval 
widths for univariate meta-analyses of sensitivity and specificity using inverse variance 
versus REML random effects models based on the assumption of normal distributions for 
the logit-transformed probabilities. The point estimates from the two methods are very 
similar. However, the methods often produce different standard errors, resulting in 
different confidence interval widths. Figure 3 presents the absolute difference plots 
(untransformed scale) between estimated sensitivities and specificities. The absolute 
differences between the two methods are rarely greater than 2.5%. 
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Figure 2: Comparison of point estimates and standard errors of summary sensitivity and 
specificity from random effects meta-analyses using a normal approximation (estimation 
of heterogeneity with DL versus REML) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate random effects meta-analyses using the DerSimonian-
Laird inverse variance method versus REML. CI = confidence interval; DL = DerSimonian-Laird; 
REML = restricted maximum likelihood. 
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Figure 3: Absolute differences of estimated sensitivity and specificity from univariate 
random effects meta-analyses (DerSimonian-Laird versus REML) 

 

 
Difference plot of sensitivity (left panel) and specificity (right panel) estimates comparing 
univariate random effects meta-analyses using the DerSimonian-Laird inverse variance method 
versus REML (both using a normal approximation for within-study variability). DL = DerSimonian-
Laird; REML = restricted maximum likelihood. 
 

Approximate normal versus exact binomial univariate random-
effects meta-analyses (REML) 

Figure 4 compares the point estimates (logit-transformed) and confidence interval 
widths from univariate random effect meta-analyses of sensitivity and specificity using a 
normal approximation versus the exact binomial likelihood (both models fit with REML). 
The point estimates from the two models are often dissimilar, and differences are greater 
for sensitivity and specificity values that are closer to one. This may be explained in part 
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that summary sensitivity or specificity are biased towards 0.5. The aforementioned biases 
are not a problem for meta-analysis methods using the exact likelihood. 

Further, in many cases the exact likelihood results in wider confidence intervals, 
indicating that the normal approximation leads to an underestimation of the uncertainty 
surrounding the summary estimates. Figure 5 presents the absolute difference 
(untransformed scale) between estimated sensitivities and specificities. It is not 
uncommon to have differences in summary sensitivity and specificity of 5% or higher. As 
mentioned, summary sensitivity and specificity obtained with the normal approximation 
tend to smaller than those obtained from exact methods.  

 

Figure 4: Comparison of point estimates and confidence interval widths of summary 
sensitivity and specificity from univariate random effects meta-analyses using the exact 
binomial likelihood versus using a normal approximation (both models fit using REML) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate random effects meta-analyses using the exact binomial 
likelihood versus using an approximate normal likelihood to describe within-study variability. CI = 
confidence interval width; REML = restricted maximum likelihood.  
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Figure 5: Absolute differences of estimated sensitivity and specificity (univariate random 
effects meta-analyses using the exact binomial likelihood versus a normal approximation; 
both models fit with REML) 

  
Difference plot of sensitivity (left panel) and specificity (right panel) estimates comparing 
univariate random effects meta-analyses using the exact binomial likelihood versus using a 
normal approximation for within-study variability (both models fit with REML). REML = restricted 
maximum likelihood. 

Summary for univariate meta-analysis methods 
 Figure 6 summarizes the comparisons of univariate analyses of sensitivity and 
specificity discussed in this report [fixed effect inverse variance (normal approximation); 
random effects using the DerSimonian-Laird method (normal approximation); random 
effects using REML (normal approximation); random effects using REML (exact 
binomial likelihood)]. Fixed and random effects methods often produced different point 
estimates, reflecting the different weights assigned to each study by these methods. 
Among random effects methods, the greatest discrepancies were observed between 
methods using the exact binomial likelihood versus those relying on the normal 
approximation. This could be explained by the need for continuity corrections, or the fact 
that the logit-transformed proportions and their variance are correlated, both of which 
would result in a downward bias for the summary sensitivity and specificity.  
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Figure 6: Summary comparison of logit-transformed sensitivity and specificity estimates 
from all univariate methods considered in this report 

  
Estimates are logit-transformed. Binomial = model using the exact binomial likelihood for within-
study variability; DL -= DerSimonian-Laird; FE = fixed effect; IV = inverse variance; normal = 
model using a normal approximation for within-study variability; RE = random effects; REML = 
restricted maximum likelihood.
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BIVARIATE META-ANALYSIS METHODS 
This section compares the results of analyses based on alternative bivariate 

models for the joint meta-analysis of sensitivity and specificity.  

Non-iterative (inverse variance) versus iterative (REML) 
estimation of between-study variability in bivariate random 
effects meta-analyses (normal approximation) 

Figure 7 compares the point estimates (logit-transformed) and confidence interval 
widths from bivariate random effects meta-analyses of sensitivity and specificity using a 
normal approximation to model within-study variability. We compare models that use a 
non-iterative estimator of between-study variance (a generalization of the DerSimonian-
Laird method) versus an iterative estimator obtained with REML (24). Point estimates 
from the two methods were almost identical. However, REML estimation often (but not 
always) resulted in greater wider confidence intervals compared to the non-iterative 
method. This possibly reflects the inability of the non-iterative method to incorporate the 
uncertainty in the estimation of between-study heterogeneity. Figure 8 presents the 
absolute difference (untransformed scale) between estimated sensitivities and specificities 
from the two methods, indicating that differences in summary estimates higher than 2.5% 
are uncommon.  
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Figure 7: Comparison of point estimates and confidence interval widths of summary 
sensitivity and specificity from bivariate random effects methods using a normal 
approximation (generalized DerSimonian-Laird inverse variance vs. REML) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from bivariate random effects meta-analyses using τηηηε generalized 
DerSimonian-Laird and REML methods (both with a normal approximation to represent within-
study variability). CI = confidence interval width; gen. DL = generalized DerSimonian-Laird; REML 
= restricted maximum likelihood. 
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Figure 8: Absolute differences of estimated sensitivity and specificity from bivariate 
random effects meta-analyses with generalized DerSimonian-Laird inverse variance vs. 
REML (both models using a normal approximation to represent within-study variability) 

 
Difference plot of sensitivity (left panel) and specificity (right panel) estimates comparing bivariate 
random effects meta-analysis using a normal approximation for 2 estimation methods: 
generalized DerSimonian-Laird and REML. Gen. DL = generalized DerSimonian-Laird; REML = 
restricted maximum likelihood.  
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and typically suggest underestimation of sensitivity and specificity in meta-analyses 
using a normal approximation (compared to those using the exact binomial likelihood). 

Figure 9: Comparison of point estimates and confidence interval widths of summary 
sensitivity and specificity from bivariate random effects meta-analyses (approximate 
normal versus exact binomial; both models fit with REML) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from bivariate random effects meta-analyses using the exact binomial 
likelihood versus using an approximate normal likelihood to describe within-study variability. CI = 
confidence interval; REML = restricted maximum likelihood. 
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Figure 10: Absolute differences of estimated sensitivity and specificity from bivariate 
random effects meta-analyses (approximate normal versus exact binomial; both models fit 
with REML) 

Difference plot of sensitivity (left panel) and specificity (right panel) estimates comparing bivariate 
random effects meta-analysis using the exact binomial likelihood versus using a normal 
approximation for within-study variability. REML = restricted maximum likelihood. 

Bayesian versus REML fitting for the binomial bivariate random-
effects model (exact likelihood) 

Figure 11 compares the point estimates (logit-transformed) and confidence or 
credibility interval widths for bivariate random effects meta-analyses of sensitivity and 
specificity fit using fully Bayesian and REML estimation (both based on the exact 
binomial likelihood for within-study variability). Point estimates from the two methods 
were almost identical. However, the Bayesian model typically resulted in substantially 
larger credibility interval widths, indicating greater uncertainty around the sensitivity and 
specificity estimates compared to REML. Figure 12 presents the absolute difference 
(untransformed scale) between estimated sensitivities and specificities, confirming that 
point estimate differences higher than 5% were extremely uncommon. 
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Figure 11: Comparison of point estimates and confidence/credibility interval widths of 
summary sensitivity and specificity from bivariate random effects meta-analyses 
(Bayesian versus REML; both models using the exact binomial likelihood to represent 
within-study variability) 

  
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from bivariate random effects models using fully Bayesian versus 
REML estimation (both using the exact binomial likelihood to represent within-study variability). CI 
= confidence interval; CrI = credibility interval; REML = restricted maximum likelihood. 
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Figure 12: Absolute differences of estimated sensitivity and specificity from bivariate 
random effects meta-analyses fit using fully Bayesian versus REML estimation (using the 
exact binomial likelihood to represent within-study variability) 

 
Difference plot of sensitivity (left panel) and specificity (right panel) estimates from bivariate 
random effects meta-analysis models fit using fully Bayesian versus REML estimation (both 
models used the exact binomial likelihood to represent within-study variability). REML = restricted 
maximum likelihood. 
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specificity discussed in this report [random effects using a generalization of the 
DerSimonian-Laird method (normal approximation); random effects using REML 
(normal approximation); random effects using REML (exact binomial likelihood); and 
Bayesian random effects using the exact binomial likelihood]. The greatest discrepancies 
in meta-analytic point estimates were observed between methods using the exact 
binomial likelihood versus those relying on the normal approximation. This could be 
explained by the need for continuity corrections, or the fact that the logit-transformed 
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Figure 13: Summary comparison of logit-transformed sensitivity and specificity estimates 
from all univariate methods considered in this report 

 
Binomial = model using the exact binomial likelihood for within-study variability; gen DL= 

generalized DerSimonian-Laird; normal = model using a normal approximation for within-study 
variability; REML = restricted maximum likelihood. 
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Estimation of the between-study correlation (inverse variance, 
REML, and Bayesian bivariate models) 

The bivariate models, both using a normal approximation and the exact binomial 
likelihood, allow estimation of the correlation of sensitivity and specificity at the 
between-study level. Figure 14 presents scatter plots of the estimated correlation from 
four bivariate models: the two models with a normal approximation (fit using either the 
generalized DerSimonian-Laird method or REML), and two models using the exact 
binomial likelihood to describe within-study variability (fit using REML or a fully 
Bayesian approach). It is obvious that these methods produce different distributions of 
correlations, with the maximum likelihood approaches often returning estimated 
correlations equal to -1 (and less frequently, 1). In contrast the Bayesian model rarely 
produces such extreme correlation values. Negative values are more common with all 
approaches, but the estimated correlations from all methods are sometimes positive 
(Table 3). Negative correlation values are consistent with the existence of threshold 
effects (i.e., the trade-off between sensitivity and specificity) in meta-analyses of test 
accuracy. The differences in the correlation estimates are highlighted by Figure 15, 
which is a matrix scatter plot of the results from the same 4 methods. Figure 16 presents 
the absolute differences in the correlation estimates between alternative methods.  
 Generally, as is evident from the relatively wide confidence intervals, the 
correlation parameter is poorly estimated. As an example, Figure 17 shows the 
correlation point estimates and corresponding 95% confidence intervals from 227 studies 
for which they could be calculated (for studies where the correlation was estimated to be 
-1 or +1, confidence intervals could not be calculated). The confidence interval excluded 
negative correlation values in 5 of the 74 cases where the point estimate of the correlation 
was positive; in contrast, the confidence interval excluded positive correlation values in 
43 of the 153 cases where the point estimate of the correlation was negative (Fisher exact 
p<0.001 for the difference in statistical significance). 
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Figure 14: Histograms of the estimated correlation between sensitivity and specificity from 
the three bivariate methods compared in this report.  

 
Histograms of the estimated correlation between sensitivity and specificity from bivariate random 
effects meta-analysis models using: (top left) normal approximation with generalized 
DerSimonian-Laird (gen.DL); (top right) normal approximation  wth restricted maximum likelihood 
(REML); (bottom left) exact binomial likelihood with REML; (bottom right) exact binomial likelihood 
with Bayesian model.. 
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 Table 3: Estimated correlation by different bivariate methods 
Method 
(model /approach for within-study variability/ model 
fitting method) 

Estimated correlation <0 
N (%) 

BREMA, normal, gen. DL* 207 (70) 
BREMA, normal, REML 209 (70) 
BREMA, binomial, REML 202 (68) 
BREMA, binomial, Bayesian 199 (66) 

* In one meta-analysis the correlation could not be estimated.  
BREMA = bivariate random effects meta-analysis; gen. DL = generalized DerSimonian-Laird; 
REML = restricted maximum likelihood. 

Figure 15: Matrix scatter plot of correlation estimates from the 4 bivariate methods 
considered in this report  

 
Binomial = model using the exact binomial likelihood to describe within-study variability; Gen. DL 
= generalized DerSimonian-Laird; normal = model using an approximate normal likelihood to 
describe within-study variability; REML = restricted maximum likelihood.  
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Figure 16: Absolute differences of correlation estimates from bivariate random effects 
meta-analyses (generalized DerSimonian-Laird model using a normal approximation; 
REML using a normal approximation; REML using the exact binomial likelihood; and fully 
Bayesian model using the exact binomial likelihood) 

 
Difference plot comparing correlation estimates between models: top panel, generalized 
DerSimonian-Laird method (with a normal approximation) versus REML (with a normal 
approximation); middle panel, REML (with the exact binomial likelihood) versus REML (with a 
normal approximation); bottom panel, Bayesian model (exact binomial likelihood) versus REML 
(exact binomial likelihood). ρ = correlation; bin. = model using the exact binomial likelihood; norm. 
= model using a normal approximation; REML = restricted maximum likelihood.  
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Figure 17: Point estimates and 95% confidence intervals for the correlation of sensitivity 
and specificity, as estimated by the bivariate model using the exact binomial likelihood 
(REML estimation) 

 
Estimates from the bivariate model using the exact binomial likelihood for within-study variability. 
Point estimates are shown as red “x” symbols, extending lines represent 95% confidence 
intervals. REML = restricted maximum likelihood.  
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COMPARISON OF UNIVARIATE AND BIVARIATE METHODS 
 This section compares the results of univariate and bivariate methods for meta-
analysis of sensitivity and specificity. We present comparisons that – to the extent 
possible – “isolate” the effect of bivariate analysis from the effect estimation method 
(inverse variance versus REML) or the likelihood used to represent within-study 
variability (exact binomial versus approximate normal), by performing pairwise 
comparisons where these confounding factors were constant. 

Univariate versus bivariate random effects meta-analyses using 
the normal approximation (DerSimonian-Laird and generalized 
DerSimonian-Laird methods) 

Figure 18 compares the point estimates (logit-transformed) and confidence 
interval widths for meta-analyses of sensitivity and specificity comparing univariate and 
bivariate random effects models (using a normal approximation for within-study 
variability). The univariate analyses used the DerSimonian-Laird method to estimate 
between-study heterogeneity; the bivariate analyses use a multivariate generalization of 
the same method. Overall, point estimates and confidence interval widths from the two 
methods were similar. Figure 18 presents the absolute difference (untransformed scale) 
between estimated sensitivities and specificities, which emphasizes the general 
concordance of the point estimates of the two methods (no differences larger than 10% 
were observed and only occasional differences beyond 5%). 
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Figure 18: Comparison of point estimates and confidence interval widths of summary 
logit-transformed sensitivity and specificity (univariate random effects versus bivariate 
random effects inverse variance methods, both using a normal approximation for within-
study variability) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate random effects meta-analyses over bivariate random 
effects inverse variance (DerSimonian-Laird and generalized DerSimonian-Laird) meta-analysis 
(with an approximate normal likelihood to describe within-study variability). CI = confidence 
interval; DL = DerSimonian-Laird; gen. DL = generalized DerSimonian=Laird. 
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Figure 19: Absolute differences of estimated sensitivity and specificity in univariate versus 
bivariate random effects inverse variance meta-analyses (both using a normal 
approximation for within-study variability) 

 
Difference plot of sensitivity (left panel) and specificity (right panel) comparing bivariate versus 
univariate random effects inverse variance meta-analyses (Der-Simonian-Laird vs. generalized 
DerSimonian-Laird; both using a normal approximation for within-study variability). DL = 
DerSimonian-Laird; gen.DL = generalized DerSimonian-Laird.  

Univariate versus bivariate random effects meta-analyses using 
the normal approximation (using REML) 
 Figure 20 compares the point estimates (logit-transformed) and confidence 
interval widths for meta-analyses of sensitivity and specificity comparing univariate and 
bivariate random effects models using REML estimation (with a normal approximation 
for within-study variability). Overall, point estimates from the two methods are similar, 
however the uncertainty around the estimates is often different between methods; in 
many cases the bivariate model produces greater confidence interval widths, indicating 
larger uncertainty around estimates. Figure 21 presents the absolute difference 
(untransformed scale) between estimated sensitivities and specificities from the two 
models; the graph emphasizes the general concordance of the point estimates of the two 
methods (no differences larger than 10% were observed; only occasional differences 
beyond 5%). 
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Figure 20: Comparison of point estimates and standard errors of summary logit-
transformed sensitivity and specificity from univariate versus bivariate random effects 
meta-analyses with REML estimation (using a normal approximation for within-study 
variability) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate and bivariate random effects meta-analyses fit using 
REML (with an approximate normal likelihood to represent within-study variability). CI = 
confidence interval; REML = restricted maximum likelihood. 
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Figure 21: Absolute differences of estimated sensitivity and specificity from univariate and 
bivariate random effects meta-analyses with REML estimation (using a normal 
approximation to represent within-study variability for both models) 

 
Difference plots of sensitivity (left panel) and specificity (right panel) comparing bivariate versus 
univariate random effects meta-analyses fit with REML (using a normal approximation to 
represent within-study variability).  

  

Univariate versus bivariate random effects meta-analyses using 
the exact binomial likelihood (using REML) 

Figure 22 compares the point estimates (logit-transformed) and confidence 
interval widths for meta-analyses of sensitivity and specificity comparing univariate and 
bivariate models (using the exact binomial likelihood to represent within-study 
variability). Overall, point estimates and confidence interval widths from the two 
methods were similar. Figure 23 presents the absolute difference (untransformed scale) 
between estimated sensitivities and specificities, which emphasizes the general 
concordance of the point estimates of the two methods (only one discrepancy beyond 
5%). 
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Figure 22: Comparison of point estimates and confidence interval widths of summary 
logit-transformed sensitivity and specificity from univariate versus bivariate random 
effects meta-analyses using the exact binomial likelihood (both models fit using REML) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding 
confidence interval widths from univariate and bivariate random effect meta-analyses fit using 
REML (both models using the exact binomial likelihood to represent within-study variability). CI = 
confidence interval; REML = restricted maximum likelihood. 
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Figure 23: Absolute differences of estimated sensitivity and specificity comparing 
univariate versus bivariate random effects meta-analyses fit with REML (both models 
using the exact binomial likelihood to represent within-study variability) 

 
Difference plot of sensitivity (left panel) and specificity (right panel) comparing bivariate versus 
univariate random effects models fit using REML (both models used the exact binomial likelihood 
to represent within-study variability). REML = restricted maximum likelihood. 
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Summary for the comparison of univariate and bivariate 
methods 
 Figures 24 and 25 summarize the comparisons of effect sizes from all non-
Bayesian random effects methods used in this report (univariate and bivariate; 
DerSimonian-Laird/generalized DerSimonian-Laird and REML; using the exact binomial 
likelihood or a normal approximation). Overall, the greatest discrepancies were observed 
between methods using the exact binomial likelihood versus those relying on the normal 
approximation. The point estimates from univariate and bivariate meta-analyses were 
similar both for methods using non-iterative (DerSimonian-Laird/generalized 
DerSimonian-Laird) or iterative (REML) estimators of between-study variance. 
  

Figure 24: Summary comparison of logit-transformed sensitivity and specificity estimates 
from all methods considered in this report  

 
Binomial = model using the exact binomial likelihood; biv = bivariate; gen. DL = generalized 
DerSimonian-Laird method; DL = DerSimonian-Laird model; normal = model using a normal 
approximation; REML = restricted maximum likelihood; univ = univariate.  
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Figure 25: Summary comparison of logit-transformed sensitivity and specificity estimates 
from all methods considered in this report  

 
Binomial = model using the exact binomial likelihood; biv = bivariate; gen. DL = generalized 
DerSimonian-Laird method; DL = DerSimonian-Laird model; normal = model using a normal 
approximation; REML = restricted maximum likelihood; univ = univariate.  
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performance. The HsROC approach proposed by Rutter and Gatsonis is the method used 
in most published meta-analyses that employ such hierarchical models.  
 

Moses-Littenberg sROC vs. Rutter-Gatsonis HsROC 
 Figure 26 compares the slope in the logit space of ROC lines produced by the 
Moses-Littenberg (weighted and unweighted) and Rutter-Gatsonis methods. Figure 27 
presents the sROC curves produced from these 3 methods for 24 randomly selected 
examples. 

Figure 26: Scatter plot of the slopes of alternative sROC lines (logit space)  

 
Alternative sROC curves based on bivariate meta-analysis (fit using maximum likelihood) or the 
Moses-Littenberg method. Examples that resulted in extreme slope values (>10 or <-10) are not 
shown to avoid distortion of the graph. sROC = summary receiver operating characteristic curve.  
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Figure 27: sROC curves for 24 randomly selected meta-analyses (bivariate random effects versus Moses-Littenberg methods) 

 
Meta-analytic ROC curves for 24 randomly selected meta-analyses. The title for each panel contains the first author and year of publication for the 
corresponding review. HsROC curves were produced with the Rutter-Gatsonis HsROC method (red lines), and the unweighted (solid black line) 
and weighted (dashed black line) Moses-Littenberg methods. HsROC = hierarchical summary receiver operating characteristic curve; sROC = 
receiver operating characteristic curve.
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Different sROC curves based on the bivariate model 
 The Rutter-Gatsonis HsROC curve is only one possible parameterization of the 
meta-analytic ROC curve. We followed Arends 2008 (25) to obtain alternative HsROC 
curves based on the results of the bivariate random effects meta-analysis model using the 
exact binomial likelihood (fit with REML). In Appendix C we present the regression 
lines corresponding to each alternative model. Importantly, the Rutter-Gatsonis HsROC 
curve always has a positive slope (because the slope is equal to the ratio of the variances 
of the logit-transformed sensitivity over the variance of the logit-transformed false 
positive rate). In contrast, the slopes of other HsROC curves are not always positive: the 
slopes estimated by MAR of η~ξ, regression of η~ξ, and of ξ~η will be negative 
whenever the correlation between logit-sensitivity and logit-specificity is positive (i.e. 
when the covariance between logit-transformed sensitivity and false positive rate is 
negative); the slope of the regression line corresponding to the “D on S” model may also 
be negative in some cases, but this will depend on the relative values of the variances of 
logit-transformed sensitivity and specificity and their covariance.  

Figure 28 presents the alternative sROC curves discussed above for 24 randomly 
selected meta-analyses: the Rutter-Gatsonis slopes are always positive, whereas in some 
examples the slopes from the D~S, MAR of η ~ ξ, η~ξ, and ξ~η models, are negative. 
The latter three models “track together” (i.e. either all have positive slopes or all have 
negative slopes). In contrast there are some examples where the D~S model has a 
positive slope when the MAR, η~ξ, and ξ~η models have negative slopes.  

Figure 29 presents the study-level data and fitted hsROC curves for one of the 
datasets we analyzed(31) (fourth dataset on the top row of Figure 28). This was a case 
where all regression methods (except the Rutter-Gatsonis model) resulted in a negative 
slope. The data points from the studies in this meta-analysis were clustered in the top left 
corner of the ROC space, many studies had sensitivities and specificities near 1, and the 
estimated correlation between sensitivity and specificity was positive. Note also that the 
differences between the fitted lines are pronounced outside the observed region of data.   
 Table 4 shows that the regression of η~ξ, regression of ξ~η, and MAR of η ~ ξ 
result in negative slopes in 32% of the meta-analyses we performed; the D~S model 
results in negative slopes in 13%. By design, the Rutter-Gatsonis model always produces 
a positive slope. Figure 30 presents a matrix scatter plot of the slope values produced the 
different parameterizations of the HsROC curve, as well as those from the Moses-
Litenberg method (weighted and unweighted). 
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Figure 28: HsROC curves for 24 randomly selected meta-analyses (alternative parameterizations of the HsROC curve) 

  
 

Alternative ROC curves based bivariate meta-analysis (fit using maximum likelihood) for 24 randomly selected meta-analyses. The title for each 
panel contains the first author and year of publication for the corresponding review. Results are shown for the Rutter-Gatsonis (red lines), η~ξ 
(green lines), ξ~η (blue lines), D~S (purple lines), and MAR of η~ξ (black lines) parameterizations. See text and Appendix C for additional details. 
D = logit(sensitivity) – logit(1 – specificity); S = logit(sensitivity) + logit(1 – specificity); MAR = major axis regression of η on ξ; η = logit(sensitivity); ξ 
= logit(1-specificity).  
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Figure 29: Study results and fitted hsROC curves for an example dataset  
 

 
Alternative hsROC curves for the meta-analysis by vanGelder, 2003 (31) (fourth dataset on the 
top row of Figure 28). Results are shown for the Rutter-Gatsonis (red lines), η~ξ (green lines), 
ξ~η (blue lines), D~S (purple lines), and MAR of η~ξ (black lines) parameterizations, in the ROC 
space (left panel) and the logit-transformed ROC space (right panel). All models were estimated 
using REML. See text and Appendix C for additional details. For the logit space graph, in studies 
where the estimated false positive rate was 0 we used a value of 0.01 (because the logit of zero 
is undefined). D = logit(sensitivity) – logit(1 – specificity); hsROC = hierarchical receiver operating 
characteristic; S = logit(sensitivity) + logit(1 – specificity); MAR = major axis regression of η on ξ; 
REML = restricted maximum likelihood = logit(sensitivity); ξ = logit(1 – specificity).  
 
 
 
 

Table 4: Slope of ROC line in the logit-space 

Method 
Meta-analyses with 
positive slope  
N (%) 

Meta-analyses with 
negative slope  
N (%) 

R & G 298 (100) 0 (0) 
η ~ ξ 202 (68) 96 (32) 
ξ ~ η 202 (68) 96 (32) 
D ~ S 258 (87) 40 (13) 
MAR 202 (68) 96 (32) 

D = logit(sensitivity) – logit(1 – specificity); S = = logit(sensitivity) + logit(1 – specificity); MAR = major axis regression 
of logit(sensitivity) on logit(specificity); R & G = Rutter-Gatsonis model; η = logit-transformed sensitivity; ξ = logit-
transformed specificity.  
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Figure 30: Scatter plot of the slopes of alternative HsROC lines (logit space) 

 
D = logit(sensitivity) – logit(1 – specificity); MAR = major axis regression; S = logit(sensitivity) +  
logit(1 – specificity); HsROC = hierarchical summary receiver operating characteristic curve; η = 
logit(sensitivity); ξ = logit(1 – specificity). Examples that resulted in extreme slope values (>10 or 
<-10) are not show to avoid distortion of the graph. 
 

Discussion 

Key findings 
 We present a comprehensive empirical comparison of meta-analytic methods for 
studies of test accuracy, both in terms of number of meta-analyses included and in terms 
of the scope of the meta-analytic methods considered. Univariate and bivariate meta-
analyses most often resulted in similar point estimates, regardless of the estimation 
method (inverse variance or REML) or the likelihood structure used to describe between-
study variability (approximate normal or exact binomial). Use of a normal approximation 
(both in univariate and bivariate meta-analyses) resulted in summary estimates with 
lower values and led to too narrow confidence intervals, compared to methods that used 
the exact binomial likelihood. Bivariate models fit using Bayesian and maximum 
likelihood methods produced almost identical summary estimates of sensitivity and 
specificity. The credibility intervals produced by Bayesian bivariate meta-analysis 
methods were substantially wider compared to the confidence intervals of maximum 
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likelihood methods (using the exact binomial likelihood to describe within-study 
variability for both models). Although often not well estimated, the between-study 
correlation (of sensitivity and specificity) was frequently far from zero. This indicates 
that ignoring it is generally inappropriate for meta-analyses. Alternative meta-analytic 
methods to obtain sROC curves resulted in substantially different curves; differences 
were substantial between alternative parameterizations of the HsROC curves (particularly 
when the correlation between sensitivity and specificity was estimated to be positive).  

Meta-analysis of sensitivity and specificity 
 Our findings substantially extend previous comparisons between methods for 
meta-analysis of test accuracy. Table 5 summarizes selected empirical comparisons of 
meta-analytic methods for test accuracy, where at least one of the methods allowed for 
correlation of sensitivity and specificity at the between-study level. Generally, previous 
reports have assessed only few applied meta-analysis examples (ranging from 1 to 50 
meta-analyses), whereas we analyzed a much larger database using a wide array of 
analytic approaches. 

Previous theoretical and simulation studies have suggested that the binomial 
distribution may be preferable to the normal approximation for modeling within-study 
variability. We believe that our observations are in concordance with this position. Not 
unexpectedly, the differences between the two methods were more pronounced in studies 
of small sample size and meta-analyses where tests had high sensitivity and specificity. In 
such cases the normal distribution will be a poor approximation to the binomial. 
Furthermore, in studies where some of the counts are zero, analysis using the normal 
likelihood will require the use of a continuity correction (so that the variance and point 
estimate of the study-level logit-sensitivity or logit-specificity can be calculated). The 
continuity correction will bias the point estimate of individual studies; this is why the 
difference in the summary estimates between methods that rely on the normal 
approximation versus those that do not is greater when the summary sensitivity or 
specificity are closer to one (32). An additional reason for the systematically smaller 
summary sensitivity or specificity with normal approximation methods may be that in the 
meta-analysis, the estimate (logit-transformed sensitivity or specificity) and its variance 
are correlated, in that the variance is a function of the estimate and the sample size. This 
correlation is positive for proportions larger than 0.5, and thus estimates near one have 
larger variance (and receive less weight in the meta-analysis) compared to estimates near 
0.5. The net effect is that summary sensitivity or specificity are biased towards 0.5 
(25,30). Such a bias is not a problem for meta-analysis methods using the exact 
likelihood, and is not observed when variance stabilizing transformations are used for 
meta-analysis of proportions (such as the arcsine transformation) [reference to be 
provided post peer review].  
 Few studies have compared the results of bivariate meta-analysis using maximum 
likelihood versus fully Bayesian methods for the meta-analysis of sensitivity and 
specificity and those that did used models that were not directly comparable) (16,18,19). 
Many investigators have commented that Bayesian methods are less accessible to meta-
analysts than the corresponding maximum likelihood methods. We provide the BUGS 
code we used to fit the bivariate model for the model in Appendix B. We found that 
convergence problems were not common when fitting the bivariate model; when present 
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they were mostly due to numerical instability in cases where the number of studies was 
small, sensitivity and specificity were close to 1, or the between-study variance was very 
low. For Bayesian analyses, we were able to obtain model convergence in most datasets 
by slightly modifying the non-informative prior distributions used. Bayesian analyses 
resulted in summary estimates of sensitivity and specificity that were very close to those 
obtained from the maximum likelihood estimation. However, there were substantial 
differences in the width of the credibility and confidence intervals produced by Bayesian 
and maximum likelihood analyses, respectively. 

Bivariate methods provide estimates of the correlation between sensitivity and 
specificity at the between-study level. Alternative models (normal approximation for 
within-study variability versus exact binomial distribution) and estimation methods (non-
iterative versus REML; frequentist versus Bayes) can yield quite different correlation 
estimates. This may be another symptom of the fact that the correlation parameter is 
generally poorly estimated. A telling observation is the following: frequentist approaches 
(maximum likelihood and inverse variance methods) often estimated the correlation 
parameter in the extremes of its domain, namely -1 (and sometimes +1). Riley 2007 (33) 
made a similar observation in a simulation study. In contrast, Bayesian methods rarely 
produced extreme correlation values, due to shrinkage toward the mean of the prior 
distribution (the mean is zero for the uniform(-1,1) prior distribution that we used).
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Table 5: Summary of selected previous empirical comparisons of meta-analysis methods, including simulation studies 
Author, year 
[reference] 

Number of MAs Methods compared and  
model fitting 

Software Key findings Authors’ recommendations/conclusions 

Macaskill 
(16), 2004 

1 (3 index tests) HsROC [ML vs. fully  Bayesian] 
vs. sROC (unweighted) 

SAS Estimates from ML analyses agree with Bayesian analyses; CIs from 
ML analysis were narrower than those from Bayesian analysis; the 
ROC curves for all analyses were similar for each index test. 

ML formulation of HsROC model may be more 
accessible; Bayesian methods allow greater 
modeling flex ibility ; model checks are required for 
distributional assumptions of RE. 

Reitsma (10), 
2005  

1 (3 index tests) sROC vs. BREMA normal SAS Summary values of sensitiv ity  and specificity  at the Q-point for one of 
the index tests were very different from the pooled estimate produced 
by the bivariate model. 

The bivariate model is an “improvement and 
extension” of the “traditional” sROC approach. 
Explanatory  variables with separate effects on 
sensitiv ity  and specificity  can be added in the 
bivariate model.  

Chu & Cole 
(20), 2006  

1 BREMA normal vs. binomial SAS Results of the two methods were similar in the applied example; in a 
limited simulation study the exact binomial likelihood gave unbiased 
results whereas the normal likelihood produced biased results for Se, 
Sp and ρ, when Se and Sp are close to 1. 

In sparse datasets the exact likelihood may be 
preferable. 

Harbord (13), 
2007 

1 Bivariate binomial vs. HsROC SAS Parameter estimates of each model can be used to calculate those of 
the other; results are nearly  identical. In the single example, the 
correlation between sensitiv ity  and specificity  was positive. 

The bivariate and HsROC models are closely  
related and in common situations identical. The 
HsROC model generally  allows additional modeling 
flex ibility . 

Riley (33), 
2007 

1 Bivariate normal vs. univariate 
normal; univariate binomial vs. 
bivariate binomial (the latter 
failed to converge) 

SAS Univariate and bivariate analyses with a normal approx imation 
produced similar point estimates; the correlation was estimated as -1, 
leading to slightly  larger between-study variances in the bivariate 
analyses. The univariate analysis using the exact binomial likelihood 
produced slightly  higher estimates of sensitiv ity  and specificity ; the 
corresponding bivariate analysis failed to converge. Simulation results 
indicated that the between-study correlation is often estimated to be -1 
(or, less commonly, +1) when the number of studies is small or the 
within-study variance is large (compared to the between-study 
variance); this leads to an upward bias in the estimates of between-
study variance in the bivariate case. In simulated bivariate meta-
analyses of 10 studies the model using the binomial likelihood failed to 
converge in 397/1000 iterations. 

The BREMA using a normal likelihood is preferable 
to two normal UREMAs. For meta-analyses of 
proportions (e.g., sensitiv ity  and specificity ) the 
exact binomial likelihood is preferable compared to 
the BREMA using a normal likelihood or two 
separate UREMAs using the exact likelihood. The 
bivariate model with the exact likelihood may 
occasionally  fail to converge, often due to 
difficulties in estimating the correlation between 
sensitiv ity  and specificity. 

Arends (25), 
2008 

2 BREMA normal vs. binomial; 
alternative HsROC curves 
derived from the bivariate 
model vs. the sROC method 

SAS Results using the approx imate normal likelihood were similar to those 
using the exact binomial likelihood in one example (however the exact 
likelihood produced higher values of sensitiv ity  and specificity). The 
alternative HsROC curves generated by the bivariate model differ 

Multiple HsROC curves can be derived from the 
bivariate model. BREMA extends the sROC 
approach and prov ides a unify ing framework for 
other approaches to the meta-analysis of diagnostic 



DRAFT DRAFT 

 53 

(Moses-Littenberg) substantially  between them and may differ from the Moses-Littenberg 
sROC. 

tests.  

Hamza (32), 
2008 

1 UREMA, normal vs. binomial  SAS In separate UREMA, estimates from the approx imate normal method 
were lower compared to those produced from the exact binomial 
method, both for sensitiv ity  and specificity . In simulation, the exact 
likelihood always performed better than the approx imate approach and 
gave unbiased estimates; the approx imate method had large bias and 
poor coverage. 

The exact binomial likelihood is the method of 
preference and should be used whenever feasible. 

Hamza (34), 
2008 

1 Random intercept sROC vs. 
BREMA (normal and binomial) 

SAS In the data example, the parameter estimates from the three methods 
differed substantially  and resulted in substantially  different sROC 
curves. In simulations, the BREMA with the exact binomial likelihood 
gave unbiased estimates of the intercept and slope parameter of the 
sROC; coverage was also acceptable except when the number of 
studies was low. The random intercept sROC method and the BREMA 
with a normal approx imation produced biased results and had poor 
coverage probabilities. Bivariate methods may fail to converge when the 
correlation of sensitiv ity  and specificity  is close to -1 or +1. 

The BREMA with exact binomial likelihood for the 
within-study model performed better than other 
methods. 

Harbord (21), 
2008 

8 Pooling vs. univariate RE MA 
vs. separate MA of LRs (not 
considered here) vs. sROC 
(weighted and unweighted) vs. 
BREMA/HsROC 

SAS In 6/8 examples, all methods gave similar point estimates; in 2/8 cases 
pooling gave different point estimates; CIs from pooling were “too 
narrow”. In 5/8 examples, sROC curves from all methods (pooling not 
assessed) were similar; in 1 example the sROC results (weighted and 
unweighted) differed from other methods; in 1 example 
BREMA/HsROC, weighted sROC and separate RE MA produced 
different results from the unweighted sROC; in 1 example all methods 
produced similar results within the range of data but diverged outside 
that range.  

HsROC or BREMA methods should be used as the 
standard; simple pooling should not be used to 
derive summary values of sensitiv ity  and specificity; 
univariate RE MA may be used to give a valid 
estimate of the summary point alone; 
HsROC/BREMA appears to be the only  way to 
obtain a valid sROC curve. 

Chappell (26), 
2009 

4 examples of an 
algorithm for 
deciding the 
optimal analysis 
method 

Alternative HsROC curves from 
the bivariate model; univariate 
vs. bivariate methods (fixed 
and random effects). BREMA 
estimates obtained from ML 
methods; interval estimates 
from the posterior distribution 
with seemingly  non-informative 
priors for the hyperparameters 
through MCMC. 

R Multiple HsROC curves can be derived from the bivariate meta-analysis 
model; these curves can have substantially  different shapes. 
Application of a proposed algorithm to guide the selection of the optimal 
meta-analysis model (bivariate versus univariate; fixed versus random) 
resulted in different choices (i.e. univariate meta-analyses were 
considered appropriate in some examples; bivariate in others). 
Parameters of the bivariate model were sometimes poorly  estimated 
(particularly  the between-study variances and the correlation of logit-
sensitiv ity  and specificity). 

A zero or positive correlation between sensitiv ity  
and specificity  “does not invalidate the bivariate 
model, as such”, but means that “the data should 
not be summarized by an sROC curve”. In some 
situations the sROC model may be inappropriate or 
there may not be enough data to estimate model 
parameters reliably . The authors propose an 
algorithm for the determination of the optimal 
analysis method for diagnostic test data. 

Simel (22), 
2009 

2 (one with 3 
index tests) 
“selected for 
highlighting the 
merits” of BREMA 

BREMA normal vs. BREMA 
binomial vs. univariate analysis 
(fixed effects and RE) 

SAS; 
Meta-
Disc and 
CMA 

In analyses selected for highlighting the merits” of BREMA: among 
pairwise comparisons between all methods the median difference was 
1.5%  (25th-75th perc.=1.0-2.2% , maximum=6.0% ); in 5 unselected 
analyses differences in sensitiv ity  were 0-6% ; differences in specificity  
were 0-2% ; across all 7 examples the median difference in posterior 

The two approaches lead to relatively  small 
differences in posterior probabilities; premature to 
insist that BREMA is the only  way to get clinically  
useful results; more work needs to be done to solve 
the problem of non-convergence. 
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+ 5 unselected probability  (assuming a prior probability  of 0.5) between methods was 
2.5%  (25th-75th perc.=2.2–3.2% , maximum=11% ). 

Paul (18), 
2010 

1 BREMA binomial [ML vs. 
Bayesian MCMC vs. Bayesian 
INLA vs. empirical Bayes INLA 

R In the applied example, point estimates and intervals around sensitiv ity , 
specificity  and their variances were similar across methods. Bayesian 
methods and INLA with Empirical Bayes modeling produced similar 
point estimates and intervals around the correlation of sensitiv ity  and 
specificity ; the ML approach produced a different estimate of the 
correlation (-1) with very wide confidence intervals (-1 to 1). In a 
simulation study, INLA and ML methods produced similar results in 
terms of bias and mean squared error. INLA had better coverage; ML 
modeling underestimated the variance parameters whereas INLA 
produced less downwardly  biased variance estimates and more, 
reliable estimates of the correlation. 

INLA is more stable and gives generally  better 
coverage probabilities for the pooled estimates and 
less biased estimates of variance parameters 
compared to ML modeling. INLA may be more 
user-friendly  compared to full MCMC Bayesian 
modeling.  

Menke (35), 
2010 
19936437 

50 BREMA binomial vs. HsROC, 
both fixed and random effects 

SAS Estimates of BREMA and HsROC analyses were nearly  identical; 
correlations between point estimates or SEs produced by the two 
methods were >0.99. Comparisons were not reported between random 
end fixed effects method; convergence was fast (1.4 seconds per MA). 

Generalized linear random effects models are an 
alternative to the HsROC approach. 

Verde (19), 
2010 

2 BREMA binomial using 
different specifications of the 
random effects distribution 
(binomial-normal vs. binomial-
normal based on scale 
mixtures vs. binomial-t based 
on scale mixtures) and link 
functions (logit vs. c-log-log). 
Comparisons with the exact 
binomial BREMA model (from 
Chu & Cole 2006); the Rutter-
Gatsonis HsROC model; and a 
Bayesian model accounting for 
disease prevalence were also 
reported for 1 of the examples.  

R; 
Winbugs 

The logit and c-log-log link functions produced similar results and 
comparable model fit. The binomial-normal and binomial-t (based on 
scale mixture of normals) models produced different results for the 
summary sensitiv ity  and specificity  (wider intervals for the bivariate-
normal model) and their respective predictive distributions (wider 
intervals for the bivariate-t model with scale mixtures). The Bayesian 
bivariate-normal model produced similar results to the ML modeling. 
The Bayesian bivariate-t model with scale mixtures may offer better fit 
compared to the Bayesian bivariate-normal model with scale mixtures 
or the Bayesian bivariate-normal model.  

Inference regarding random effects should be 
based on distributions more flex ible than the 
normal. The predictive distribution of meta-analysis 
results reflects their future use. Model checking for 
meta-analysis results should not be ignored.  

Unless otherwise stated analyses used ML methods. The studies by Macaskill (16) 2004; Reitsma (10) 2005; Chu & Cole (20) 2006; Harbord (13) 
2007; Chappell 2009 (26); Simel (22) 2009; and Verde 2010 (19), considered a common meta-analysis example, based on a systematic review by 
Scheidler 1997 (36).   
BREMA = bivariate random effects meta-analysis; CI = confidence interval; CMA = comprehensive meta-analysis; HsROC = hierarchical sROC; 
INLA = integrated nested Laplace approximations; LR = likelihood ratio; MA = meta-analysis; MCMC = Markov Chain Monte Carlo; ML = maximum 
likelihood; perc. = percentile; RE = random effect; Se = sensitivity; Sp = specificity; sROC = summary receiver operating characteristic curve; 
UREMA = univariate random effects meta-analyses.
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Constructing meta-analytic ROC curves 
 Arguably, ROC curves provide additional information compared to meta-analytic 
estimates of sensitivity and specificity, because they illustrate the relationship between 
average sensitivity and average specificity. Based on our previous survey [citation to be 
provided post peer review] the most commonly used method for constructing sROC 
curves is the approach proposed by Moses and Littenberg. Despite its popularity this 
model has several shortcomings, including its failure to account for underlying binomial 
distribution of data, between-study heterogeneity, and measurement error on its 
independent variable. These shortcomings of the Moses-Littenberg sROC model are 
overcome by the hierarchical modeling approaches, including the increasingly used 
model proposed by Rutter and Gatsonis (12). It can been shown that the Rutter-Gatsonis 
HsROC model is equivalent to the bivariate meta-analysis of sensitivity and specificity, 
in the absence of covariates in the regression (13,25). Thus, the parameters of the HsROC 
model can be “back-calculated” using estimates from the bivariate meta-analysis model 
(an approach we followed in this report).  
 The Rutter-Gatsonis HsROC model is one of several possible parameterization of 
the HsROC curve. Arends 2008 (25) discuss alternative parameterizations, which we 
implemented for all meta-analyses we performed (plots available from the authors upon 
request). These parameterizations often result in substantially different curves compared 
to the one produced by the Rutter-Gatsonis HsROC model (12,26). Importantly, in some 
cases the slope of the ROC curve is not always positive (in contrast to the Rutter-
Gatsonis method). This means that the relationship between the average sensitivity and 
specificity cannot be explained by threshold effects across studies. Based on this 
Chappell 2009 (26) discuss that sROC curves are not always a helpful summary of the 
data, and propose a stepwise algorithm for determining the most appropriate approach to 
summarize accuracy studies. 

Limitations 
 Some limitations need to be considered when interpreting our results. Because of 
the way we constructed the database of systematic reviews of test accuracy, all included 
meta-analyses were conducted prior to 2003 and were published in English- language 
journals. Although this may limit the clinical applicability of their actual findings, it does 
not substantially affect the conclusions of our empirical comparison of methods because 
the datasets included are very diverse in terms of number of included studies, sample 
size, and reported test accuracy (Table 1). In a recent comprehensive review of reporting 
and design characteristics of systematic reviews of test accuracy that gave quantitative 
synthesis results (covering 1983 to 2009), we found no substantial change over time in 
the number of included studies or the number of meta-analyses conducted per review 
article [citation to be provided post peer review].  

Another limitation of our work is that many systematic reviews contributed 
multiple datasets to the empirical comparison (approximately 2 datasets per review, on 
average). We believe that the effect of this clustering is probably minor because in most 
cases when multiple meta-analyses are presented in the same systematic review, they 
typically address different index or reference standard tests (often based on non-
overlapping sets of primary studies).  
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Finally we have focused on meta-analysis of sensitivity, specificity and meta-
analytic ROC curves, but did not consider other metrics such as likelihood ratios or areas 
under the ROC curve. We note that these metrics can be derived from the methods we 
assess (for example, likelihood ratios can be estimated from the output of the bivariate 
model) and are generally less commonly used in the diagnostic literature.  
 

Conclusions 
This work represents the most comprehensive empirical comparison of meta-

analytic methods for studies of test accuracy, both in terms of the included number of 
meta-analyses and the scope of the meta-analytic methods considered. Based on our 
empirical observations and a review of the relevant literature, we summarize key findings 
relevant to meta-analytic practice in Box 1.  
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Box 1: Summary of findings relevant to meta-analytic practice 
Bivariate versus univariate analyses 
 In our empirical comparison, bivariate meta-analyses produced point estimates that were largely similar to 
those of separate univariate analyses (also observed elsewhere(34)). Because bivariate methods account for the 
correlation between the sensitivity and specificity across studies, the confidence region around the summary point is 
different from the univariate analyses, and the same is true for predictive distributions for future studies. Our 
findings suggest that this correlation is generally poorly estimated; however, bivariate models have stronger 
theoretical motivation for most common diagnostic test meta-analysis scenarios.  
 
Approximate normal versus exact binomial distribution for modeling within-study variability 
 Based on large sample theory, the normal approximation is inadequate when the sample size of included 
studies is small and the sensitivity or specificity of tests is extreme (very high or very low). We found that continuity 
corrections (required for the normal approximation) introduced bias in meta-analytic estimates. This is consistent 
with simulation studies suggesting that meta-analysis using the exact binomial likelihood outperforms methods 
relying on the normal approximation (32). The normal approximation could be reserved for cases where the model 
using the exact likelihood cannot be fit (e.g., inability to converge), or there is no access to statistical software able 
to fit generalized linear mixed models.  
 
Maximum likelihood versus Bayesian methods 
 Bayesian methods are theoretically appealing and allow for more flexible modeling, particularly when 
complex data structures arise. Further, they allow use of external information in the form of informative prior 
distributions. In our empirical assessment point estimates of sensitivity and specificity produced by the two methods 
were very similar; however, Bayesian methods often resulted in credibility intervals that were wider compared to the 
confidence intervals of maximum likelihood methods. This reflects the Bayesian models’ ability to model the 
uncertainty in the estimation of variance parameters more completely. 
 
Bivariate and HsROC models (summary point versus summary line to synthesize data)  

Meta-analyses of sensitivity and specificity aim to provide helpful summaries of the findings of individual 
studies. Sometimes a helpful way to summarize individual studies is to provide one “summary point” of combined 
average sensitivity and specificity For example, a summary point is helpful when the results of the studies are 
relatively similar, and when the studied tests do not have different explicit thresholds for positive results. Other 
times, it is more helpful to synthesize data using a “summary line” that describes how the average sensitivity 
changes with the average specificity. For example, a summary line may be a more helpful way to synthesize data 
when studies have different explicit thresholds and their results range widely. Choosing the most helpful summary is 
subjective and case dependent, and both summaries can be reasonably employed as they provide complementary 
information. 
 
Choosing between alternative sROC curves 
 We found that alternative parameterizations of the sROC curve derived from the bivariate model can 
occasionally result in curves of different shape. Specifically, some parameterizations can result in negative estimated 
slopes when the correlation between sensitivity and specificity is positive (i.e., when the correlation between 
sensitivity and false positive rate is negative) (25,26). In such cases the relationship between the average sensitivity 
and specificity cannot be explained by varying thresholds for positive test results across studies. Some authors argue 
that such sROC curves are not a helpful summary of the data (34).  
 
Standard models are not always appropriate 
 The standard bivariate/HsROC models will not be appropriate for all diagnostic settings, for example when 
test results are reported for multiple thresholds within each study or when the classification problem is not binary. In 
such cases more complex modeling approaches are necessary to obtain correct estimates of test accuracy (37-39). 
 

 
 



DRAFT DRAFT 

DRAFT DRAFT 
58 

Abbreviations 
AHRQ  Agency for Healthcare Research and Quality 
BREMA bivariate random effects meta-analysis 
EPC  Evidence-based Practice Center 
HsROC hierarchical summary receiver operating characteristic 
MAR  major axis regression 
REML  restricted maximum likelihood 
ROC  receiver operating characteristic 
sROC  summary receiver operating characteristic 
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